Central Oklahoma Rural Partnership For Science

3-PS2-3 - Magnetic Force - Assessment Task

Task 1

A group of students wanted to see how close a paper clip needs to be to a donut magnet in order to attract it. They set up an investigation as shown below.

They pushed the magnet closer and closer to the paper clip until the paper clip moved toward the magnet. They stopped moving the magnet as soon as the paper clip started to move. They used the ruler to measure the distance from where the paper clip started to the front of the magnet. The distance was 2 centimeters (cm). They called this the attraction distance.

They wondered if adding extra magnets would change the attraction distance. They added 3 more magnets, one at a time, and recorded each distance in a data table. Their results are shown in the chart below.

Number of Magnets	Attraction Distance
1	2 cm
2	4 cm
3	6 cm
4	8 cm

1. What pattern do you notice in this data?

The students made a line graph using their data. Their graph is shown here:

2. Predict what the attraction distance would be for 5 magnets. \qquad
Show your prediction on the graph above by drawing a new point and connecting the line.
3. Why did you predict this distance?
4. Explain why adding magnets causes the attraction distance between the magnets and the paper clip to change.
(Be sure to use the data from the charts and graphs in your explanation.)
\qquad
\qquad
\qquad
\qquad

Central Oklahoma Rural Partnership For Science

Task 2

The students wondered if different types of magnets would have different attraction distances. They decided to compare a bar magnet, a cylinder magnet, one donut magnet, and a stack of 4 donut magnets. They tested each type of magnet the same way as they did in Task 1. Their results are in this chart.

Magnet	Attraction Distance
bar magnet	12 centimeters
cylinder magnet	5 centimeters
1 donut magnet	2 centimeters
Stack of 4 donut magnets	8 centimeters

1. According to the data in the chart above, which of the magnets is the strongest (pulls with the greatest force)?
2. According to the data in the chart above, which of the magnets is the weakest (pulls with the least force)?
3. Use data from the chart to explain your answers.

Task 3

The students did another investigation with the same four magnets. This time they wanted to find out how many paper clips each of the magnet types could attract at one time.

Circle the table below that you think shows the results they got based on what you learned from the data gathered in Task 1 and Task 2.

TABLE A	
Magnet Type	Number of Paper Clips Attracted
bar magnet	36
cylinder magnet	16
1 donut magnet	4
stack of 4 donut magnets	10

TABLE B	
Magnet Type	Number of Paper Clips Attracted
bar magnet	4
cylinder magnet	10
1 donut magnet	36
stack of 4 donut magnets	16

TABLE C	
Magnet Type	Number of Paper Clips Attracted
bar magnet	36
cylinder magnet	10
1 donut magnet	4
stack of 4 donut magnets	16

Using data from all three investigations, explain why you chose this table.
\qquad
\qquad
\qquad
\qquad
\qquad

