

Power Up: Math ACT Prep, Week 6

Function Notation

Essential Question

How can I increase my ACT score?

Learning Objectives

- Use function notation to simplify and evaluate functions.
- Perform operations using function notation.

Notation Exploration

- Work with a partner and use f(x) = x² 5 to answer each of the questions on your handout.
- Answer each question in the order it was provided.

Notation Exploration (Solutions 1-5) 1) $f(3) = (3)^2 - 5 = 4$ 2) $f(-1) = (-1)^2 - 5 = -4$ 3) $f(a) = (a)^2 - 5 = a^2 - 5$ 4) $f(a+4) = (a+4)^2 - 5 = a^2 + 8a + 11$ $5) \quad f(\bigstar) = (\bigstar)^2 - 5$

Notation Exploration (Solutions 6–10)

6)
$$f(\heartsuit) = (\heartsuit)^2 - 5$$

7) $f(\bigstar) = (\bigstar)^2 - 5$
8) $f(\boxdot) = (\boxdot)^2 - 5$
9) $f(paper) = (paper)^2 - 5$
10) $f(g(x)) = (g(x))^2 - 5$

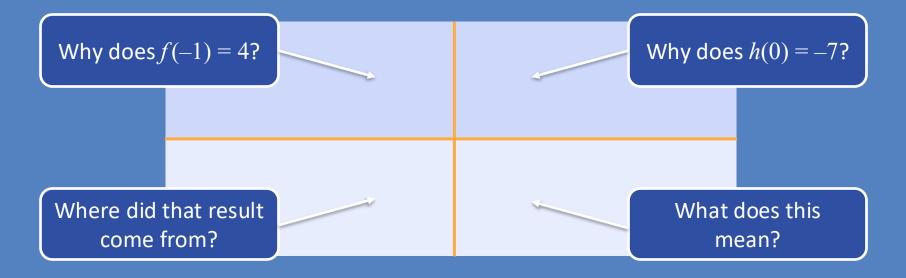
Notation Exploration: Simplifying

• Simplify question 10 for each of the following functions.

a)
$$g(x) = x+3$$

b)
$$g(x) = x^{2} + 6$$

c) $g(x) = \sqrt{x-2}$
d) $g(x) = \frac{1}{x}$


Function Notation: Composition

Algebraic (How to Write It)	Verbal (How to Read/Say It)
$(f \circ g)(x) = f(g(x))$	"f of g of x " " the composition of f of g "

— composition operation

Function Notation: Making Observations Use the given functions to see what you notice about the worked-out problems.

Function Notation: Verbalizing Observations

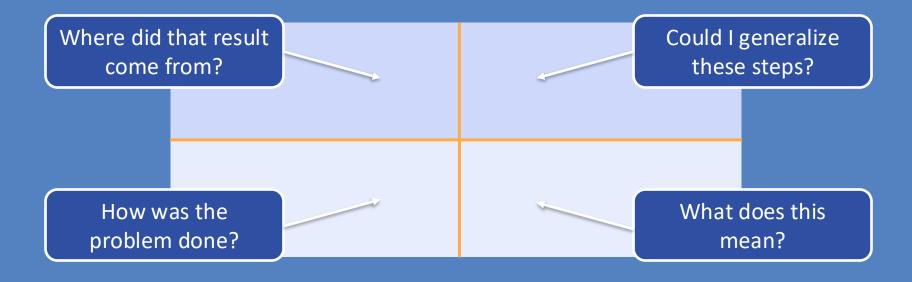
- Using academic vocabulary, do your best to describe what you observed.
 - Were there any patterns?
 - What was similar about the 4 problems?

Function Notation: Applying Observations

• Given functions f(x) = 3x - 5 and $g(x) = x^2 - 3$, what is the value of f(g(-2))?

Function Notation: Applying Observations

Given functions f (x) = 3x - 5 and g(x) = x² - 3, what is the value of f(g(-2))?


$$f(g(-2)) = f((-2)^{2} - 3)$$
$$= f(1)$$
$$= 3(1) - 5$$
$$= -2$$

Function Notation: Other Operations

Algebraic (How to Write It)	Verbal (How to Read/Say It)
(f+g)(x) = f(x) + g(x)	"f of x plus g of x " " the sum of f of g "
(f-g)(x) = f(x) - g(x)	"f of x minus g of x " " the difference of f of g "
$(fg)(x) = (f \cdot g)(x) = f(x) \cdot g(x)$	"f of x times g of x " " the product of f of g "

Function Notation: Making Observations Use the given functions to see what you notice about the worked-out problems.

Function Notation: Verbalizing Observations

- Using academic vocabulary, do your best to describe what you observed.
 - Were there any patterns?
 - What was similar about the 4 problems?

Function Notation: Applying Observations

 Let the polynomial function f and g be defined as f(x) = 2 x² - 3x and g(x) = x² - 3x + 4.
 Let h(x) = f(x) - g(x). What are all values of x for which h(x) = 0?

Function Notation: Applying Observations

• ... $f(x) = 2x^2 - 3x$ and $g(x) = x^2 - 3x + 4$. Let h(x) = f(x) - g(x). [When does] h(x) = 0?

$$h(x) = f(x) - g(x) \qquad 0 = x^{2} - 4$$

= $(2x^{2} - 3x) - (x^{2} - 3x + 4) \qquad 4 = x^{2}$
= $2x^{2} - 3x - x^{2} + 3x - 4$
= $x^{2} - 4$

Exit Ticket

Leave your paper face down until the timer starts.

<u>2-Minute Timer</u>

Exit Ticket (Answers)

1) B

2) G

Exit Ticket (Solution 1)

• A function, f, is defined by $f(x, y) = 2x - 3y^2$. What is the value of f(2, 5)?

 $f(x, y) = 2x - 3y^{2}$ $f(2, 5) = 2(2) - 3(5)^{2}$ = 4 - 75= -71

Exit Ticket (Solution 2)

• For all real numbers x and y, the operation \otimes is defined by the rule $x \otimes y = x - 2y$. What is the value of $5 \otimes 4$?

$$x \otimes y = x - 2y$$

$$5 \otimes 4 = (5) - 2(4)$$

$$= 5 - 8$$

$$= -3$$

You Powered Up!

Achievement Unlocked:

Pacing

