

K20

Power Up: Math ACT Prep, Week 6

Function Notation

K20

Essential Question

How can I increase my ACT score?

Learning Objectives

- Use function notation to simplify and evaluate functions.
- Perform operations using function notation.

Notation Exploration

- Work with a partner and use $f(x)=x^{2}-5$ to answer each of the questions on your handout.
- Answer each question in the order it was provided.

Notation Exploration (Solutions 1-5)

1) $f(3)=(3)^{2}-5=4$
2) $f(-1)=(-1)^{2}-5=-4$
3) $f(a)=(a)^{2}-5=a^{2}-5$
4) $f(a+4)=(a+4)^{2}-5=a^{2}+8 a+11$
5) $f(t)=(t)^{2}-5$

Notation Exploration (Solutions 6-10)
6) $f(0)=(0)^{2}-5$
7) $f(\&)=(\delta)^{2}-5$
8) $f(\Theta)=(\Theta)^{2}-5$
9) $f($ paper $)=(\text { paper })^{2}-5$
10) $f(g(x))=(g(x))^{2}-5$

Notation Exploration: Simplifying

- Simplify question 10 for each of the following functions.
a) $g(x)=x+3$
b) $g(x)=x^{2}+6$
c) $g(x)=\sqrt{x-2}$
d) $g(x)=\frac{1}{x}$

Function Notation: Composition

Algebraic (How to Write It)	Verbal (How to Read/Say It)
$(f \boxtimes g)(x)=f(g(x))$	"the composition of f of g "
composition operation	

Function Notation: Making Observations

 Use the given functions to see what you notice about the worked-out problems.

Function Notation: Verbalizing Observations

- Using academic vocabulary, do your best to describe what you observed.
- Were there any patterns?
- What was similar about the 4 problems?

Function Notation: Applying Observations

- Given functions $f(x)=3 x-5$ and $g(x)=x^{2}-3$, what is the value of $f(\mathrm{~g}(-2))$?

Function Notation: Applying Observations

- Given functions $f(x)=3 x-5$ and $g(x)=x^{2}-3$, what is the value of $f(\mathrm{~g}(-2))$?

$$
\begin{aligned}
f(g(-2)) & =f\left((-2)^{2}-3\right) \\
& =f(1) \\
& =3(1)-5 \\
& =-2
\end{aligned}
$$

Function Notation: Other Operations

Algebraic (How to Write It)

Verbal (How to Read/Say It)

$$
(f+g)(x)=f(x)+g(x)
$$

" f of x plus g of $x "$
" the sum of f of g "

$$
(f-g)(x)=f(x)-g(x)
$$

" f of x minus g of x "
" the difference of f of g "

$$
(f g)(x)=(f \cdot g)(x)=f(x) \cdot g(x)
$$

" f of x times g of x "
" the product of f of g "

Function Notation: Making Observations

Use the given functions to see what you notice about the worked-out problems.

Function Notation: Verbalizing Observations

- Using academic vocabulary, do your best to describe what you observed.
- Were there any patterns?
- What was similar about the 4 problems?

Function Notation: Applying Observations

- Let the polynomial function f and g be defined as
$f(x)=2 x^{2}-3 x$ and $g(x)=x^{2}-3 x+4$.
Let $h(x)=f(x)-g(x)$. What are all values of x for which $h(x)=0$?

Function Notation: Applying Observations

- ... $f(x)=2 x^{2}-3 x$ and $g(x)=x^{2}-3 x+4$.

$$
\text { Let } h(x)=f(x)-g(x) \text {. [When does] } h(x)=0 \text { ? }
$$

$$
\begin{array}{rlr}
h(x) & =f(x)-g(x) \\
& =\left(2 x^{2}-3 x\right)-\left(x^{2}-3 x+4\right) \\
& =2 x^{2}-3 x-x^{2}+3 x-4 \\
& =x^{2}-4 & 0=x^{2}- \\
4=x^{2} \\
\pm 2=x
\end{array}
$$

Exit Ticket * EXIT $*$

Exit Ticket (Answers)

1) B
2) G

Exit Ticket (Solution 1)

- A function, f, is defined by $f(x, y)=2 x-3 y^{2}$. What is the value of $f(2,5)$?

$$
\begin{aligned}
f(x, y) & =2 x-3 y^{2} \\
f(2,5) & =2(2)-3(5)^{2} \\
& =4-75 \\
& =-71
\end{aligned}
$$

Exit Ticket (Solution 2)

- For all real numbers x and y, the operation \otimes is defined by the rule $x \otimes y=x-2 y$. What is the value of $5 \otimes 4$?

$$
\begin{aligned}
x \otimes y & =x-2 y \\
5 \otimes 4 & =(5)-2(4) \\
& =5-8 \\
& =-3
\end{aligned}
$$
 \title{

You Powered Up!
}
 \title{
You Powered Up!
}

Achievement Unlocked:

Pacing

$\underset{\text { PRCT }}{\text { PREP }}$
K20

