FUNCTION NOTATION

Algebraic (How to Write It)	Verbal (How to Read/Say It)
$(f \circ g)(x) = f(g(x))$	<i>"f</i> of <i>g</i> of <i>x "</i>

Making Observations

			$\bigwedge k(x)$
$f(x) = 3x^2 + 1$ $g(x) = x - 2$		x h(x)	
	a(x) - x = 2	-2 -28	
	0 -7		
		2 14	

Find the following using the given functions above.

$$f(-1) = 3(-1)^{2} + 1$$

$$= 4$$

$$h(0) = -7$$

$$(f \circ g)(x) = f(g(x)) = 3(g(x))^{2} + 1$$

$$= 3(x-2)^{2} + 1$$

$$= 3x^{2} - 12x + 13$$

$$(h \circ k)(4) = h(k(4))$$

$$= h(2)$$

$$= 14$$

Verbalizing Observations

Applying Observations

Use your generalization to answer the question below. Given functions f(x)=3x-5 and $g(x)=x^2-3$, what is the value of f(g(-2))?

(A) -11 (B) -2 (C) 1 (D) 118

MATH ACT PREP, WEEK 6

FUNCTION NOTATION

Algebraic (How to Write It)	Verbal (How to Read/Say It)
$(f\pm g)(x)=f(x)\pm g(x)$	" the sum/difference of f and g "
$(fg)(x) = f(x) \cdot g(x)$	"f of x times g of x "

Making Observations

$f(x) = 3x^2 + 1$	g(x) = x - 2
-------------------	--------------

Find the following using the given functions above.

(f+g)(x) = f(x) + g(x)	(f-g)(x) = f(x) - g(x)
= $(3x^2 + 1) + (x-2)$	= (3x ² + 1) - (x - 2)
= $3x^2 + x - 1$	= 3x ² - x + 3
$(fg)(x) = f(x) \cdot g(x)$ = $(3x^2 + 1)(x - 2)$ = $3x^3 - 6x^2 + x - 2$	(f+g)(-2) = f(-2) + g(-2) = $(3(-2)^2 + 1) + ((-2) - 2)$ = $13 + (-4)$ = 9

Verbalizing Observations

Applying Observations

Use your generalization to answer the question below.

Let the polynomial functions f and g be defined as $f(x) = 2x^2 - 3x$ and $g(x) = x^2 - 3x + 4$. Let h(x) = f(x) - g(x). What are all the values of x for which h(x) = 0?

(F)
$$-2 \text{ and } 2$$
 (G) $0 \text{ and } \frac{3}{2}$ (H) $-1 \text{ and } 4$ (J) $-2i \text{ and } 2i$

