GUIDED NOTES (TEACHER GUIDE)

Explain

Have students use one color to fill in the r for the radius, in both the equation and on the picture. Have students use different colors for the x-coordinate of the center and the y-coordinate of the center. This gives students color-coded reference notes for the equation and the picture. Have them do the same for the equation of any circle below.

Remind students that, even when we put a circle on the coordinate plane, the distance from the center is the radius. Be sure to emphasize that relationship between the radius and the center of the circle.

This is a great time to show students what the equation of this circle would look like. The center is at (2, 5), so we know that h = 2 and k = 5. By counting, we see the radius is 7. If we plug this information into the equation, we get $(x-2)^2 + (y-5)^2 = 49$.

1) Write the equation of a circle that has (-6,1) and (4,9) as the endpoints of its diameter.

Teacher	Students	
What do we need to write the equation of a circle?	We need to know the center and the radius.	
Where is the center of a circle?	The center is in between (perfectly in the middle of) the diameter's two endpoints.	
How do we find the point exactly in the middle of two points?	Midpoint formula (average): $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	
Let's calculate the midpoint (center).	$M = \left(\frac{(-6) + (4)}{2}, \frac{(1) + (9)}{2}\right) = \left(\frac{-2}{2}, \frac{10}{2}\right) = (-1, 5)$	
How do we find the radius of a circle?	Two options: (1) find the diameter and divide it by two, or (2) find the distance between the center and a point on the circle.	
How do we calculate the distance between two points?	Distance formula: $distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	
Let's find the distance between the center $(-1, 5)$ and the endpoint $(-6, 1)$.	$radius = \sqrt{((-6) - (-1))^{2} + ((1) - (5))^{2}}$ $r = \sqrt{(-5)^{2} + (-4)^{2}}$ $r = \sqrt{25 + 16}$ $r = \sqrt{41}$	
Now that we know the center and the radius, we can write the equation of our circle.	center = $(-1, 5)$, radius = $r = \sqrt{41}$ equation of a circle: $(x - h)^2 + (y - k)^2 = r^2$ $(x - (-1))^2 + (y - (5))^2 = (\sqrt{41})^2$ $(x + 1)^2 + (y - 5)^2 = 41$	

2) What is the center and what is the radius of $(x+4)^2 + (y-7)^2 = 100$?

$x + 4 = 0 \qquad y - 7$	7 = 0	$r^2 = 100$
x = -4 y	<u>v = 7</u>	$r = \sqrt{100}$
center $@(-4, 7)$	7)	r = 10

CENTER OF ATTENTION

GUIDED NOTES (MODEL NOTES)

Explain

1) Write the equation of a circle that has (-6,1) and (4,9) as the endpoints of its diameter.

midpoint =
$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$
 dist

center = find the midpoint of diameter

distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

radius = distance between center & endpoint

center =
$$M = \left(\frac{(-6) + (4)}{2}, \frac{(1) + (9)}{2}\right)$$

 $M = \left(\frac{-2}{2}, \frac{10}{2}\right)$
 $M = (-1, 5)$
center = $(-1, 5)$
 $radius = \sqrt{((-6) - (-1))^2 + ((1) - (5))^2}$
 $r = \sqrt{(-5)^2 + (-4)^2}$
 $r = \sqrt{25 + 16}$
 $r = \sqrt{41}$
 $radius = r = \sqrt{41}$

equation of a circle:
$$(x-h)^2 + (y-k)^2 = r^2$$

 $(x-(-1))^2 + (y-(5))^2 = (\sqrt{41})^2$
 $(x+1)^2 + (y-5)^2 = 41$

2) What is the center and what is the radius of $(x+4)^2 + (y-7)^2 = 100$?

$$x + 4 = 0 y - 7 = 0 r^{2} = 100 r = \sqrt{100} r = \sqrt{100} r = 10$$
center @ (-4, 7)

CENTER OF ATTENTION