GUIDED NOTES (TEACHER GUIDE)

Explain

\(\left.$$
\begin{array}{c|l}\text { Equation of a Circle } & \begin{array}{l}\text { Have students use one color } \\
\text { to fill in the r for the radius, } \\
\text { in both the equation and on } \\
\text { the picture. Have students }\end{array}
$$

use different colors for the

x-coordinate of the center

and the y -coordinate of the

center. This gives students

color-coded reference notes\end{array}\right\}\)| for the equation and the |
| :--- |
| picture. Have them do the |
| same for the equation of |
| any circle below. |

radius: 『

Equation of Any Circle

Remind students that, even when we put a circle on the coordinate plane, the distance from the center is the radius. Be sure to emphasize that relationship between the radius and the center of the circle.

This is a great time to show students what the equation of this circle would look like. The center is at $(2,5)$, so we know that $h=2$ and $k=5$. By counting, we see the radius is 7 . If we plug this information into the equation, we get
radius: 『

1) Write the equation of a circle that has $(-6,1)$ and $(4,9)$ as the endpoints of its diameter.

Teacher

What do we need to write the equation of a circle?

Where is the center of a circle?

How do we find the point exactly in the middle of two points?

Let's calculate the midpoint (center).

How do we find the radius of a circle?

How do we calculate the distance between two points?

Let's find the distance between the center $(-1,5)$ and the endpoint $(-6,1)$.

Now that we know the center and the radius, we can write the equation of our circle.

Students

We need to know the center and the radius.
The center is in between (perfectly in the middle of) the diameter's two endpoints.

Midpoint formula (average): $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
M=\left(\frac{(-6)+(4)}{2}, \frac{(1)+(9)}{2}\right)=\left(\frac{-2}{2}, \frac{10}{2}\right)=(-1,5)
$$

Two options: (1) find the diameter and divide it by two, or (2) find the distance between the center and a point on the circle.

Distance formula: distance $=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
\text { radius } & =\sqrt{((-6)-(-1))^{2}+((1)-(5))^{2}} \\
r & =\sqrt{(-5)^{2}+(-4)^{2}} \\
r & =\sqrt{25+16} \\
r & =\sqrt{41}
\end{aligned}
$$

center $=(-1,5)$, radius $=r=\sqrt{41}$
equation of a circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$

$$
\begin{aligned}
& (x-(-1))^{2}+(y-(5))^{2}=(\sqrt{41})^{2} \\
& (x+1)^{2}+(y-5)^{2}=41
\end{aligned}
$$

2) What is the center and what is the radius of $(x+4)^{2}+(y-7)^{2}=100$?

$$
\begin{array}{rrr}
x+4=0 & y-7=0 & r^{2}=100 \\
x=-4 & y=7 & r=\sqrt{100} \\
\text { center @(-4,7)} & r=10
\end{array}
$$

GUIDED NOTES (MODEL NOTES)

Explain

Equation of a Circle

$$
x^{2}+y^{2}=\mathbb{r}^{2}
$$

center: (0, 0)
radius: $\mathbb{\square}$

Equation of Any Circle

$$
(x-\mathfrak{K})^{2}+(y-\llbracket)^{2}=\mathfrak{r}^{2}
$$

center: ($\mathfrak{K}, \mathfrak{k})$
radius: $\mathbb{『}$

1) Write the equation of a circle that has $(-6,1)$ and $(4,9)$ as the endpoints of its diameter.

$$
\text { midpoint }=M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \quad \text { distance }=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

center $=$ find the midpoint of diameter radius $=$ distance between center \& endpoint

$$
\text { center }=M=\left(\frac{(-6)+(4)}{2}, \frac{(1)+(9)}{2}\right) \quad \begin{aligned}
& \text { radius }=\sqrt{((-6)-(-1))^{2}+((1)-(5))^{2}} \\
& M==\sqrt{(-5)^{2}+(-4)^{2}} \\
& M=(-1,5) \\
& r=\sqrt{25+16} \\
& r=\sqrt{41} \\
& \text { center }=(-1,5)
\end{aligned} \quad \begin{aligned}
\text { radius }=r=\sqrt{41}
\end{aligned}
$$

$$
\begin{aligned}
& \text { equation of a circle: }(x-h)^{2}+(y-k)^{2}=r^{2} \\
& (x-(-1))^{2}+(y-(5))^{2}=(\sqrt{41})^{2} \\
& (x+1)^{2}+(y-5)^{2}=41
\end{aligned}
$$

2) What is the center and what is the radius of $(x+4)^{2}+(y-7)^{2}=100$?

$$
\begin{array}{rrr}
x+4=0 & y-7=0 & r^{2}=100 \\
x=-4 & y=7 & r=\sqrt{100} \\
\text { center @(-4,7)} & r=10
\end{array}
$$

