## COMPLEX NUMBERS (SAMPLE RESPONSES)

## Engage

Not Like the Others

## 1) Sample Responses

The sandwich is not like the others because it's not round.
The button is not like the others because it's not food.
The donut is not like the others because it's sweet.

## 2) Sample Responses

The $\sqrt{-16}$ is not like the others because there is a negative number inside the radical.
The $\sqrt{75}$ is not like the others because it's much bigger than the other numbers.
The $\sqrt{9}$ is not like the others because it's the only single-digit radicand.

## Explore

Simplify and Justify
3) Simplify: $\sqrt{16}=4$
because $(4)^{2}=16$
5) Simplify: $\sqrt{20}$

$$
\begin{aligned}
& =\sqrt{4} \sqrt{5} \\
& =2 \sqrt{5}
\end{aligned}
$$

4) Try to simplify: $\sqrt{-16} \neq \pm 4$

$$
\text { because } \begin{aligned}
(4)^{2} & =16 \\
(-4)^{2} & =16
\end{aligned}
$$

6) Try again to simplify: $\sqrt{-16}$

$$
\begin{aligned}
& =\sqrt{16} \sqrt{-1} \\
& =4 \sqrt{-1}
\end{aligned}
$$

## I Wonder...

Sample Responses

I wonder if that is always true.
I wonder if something squared could equal a negative number.

## Explain

Practice

7) | $\sqrt{-48}$ | $=\sqrt{4} \sqrt{-1} \sqrt{12}$ | $-\sqrt{-36}$ $=-1 \cdot \sqrt{36} \sqrt{-1}$ <br>  $=2 i \sqrt{4} \sqrt{3}$ <br>  $=2 i(2) \sqrt{3}$ <br>  $=4 i \sqrt{3}$ <br>  $=-6 i$ |
| ---: | :--- | ---: |

## Extend

Simplify and Justify

| $i^{1}=\sqrt{-1}=i$ | $i^{5}=i^{4} \cdot i=(1)(i)=i$ | $i^{9}=\left(i^{4}\right)^{2} \cdot i=(1)^{2}(i)=i$ |
| :--- | :--- | :--- |
| $i^{2}=(\sqrt{-1})^{2}=-1$ | $i^{6}=i^{4} \cdot i^{2}=(1)(-1)=-1$ | $i^{10}=\left(i^{4}\right)^{2} \cdot i^{2}=(1)^{2}(-1)=-1$ |
| $i^{3}=(i)^{2} \cdot i=(-1)(i)=-i$ | $i^{7}=\left(i^{2}\right)^{3} \cdot i=(-1)^{3}(i)=-i$ | $i^{11}=\left(i^{2}\right)^{5} \cdot i=(-1)^{5}(i)=-i$ |
| $i^{4}=(i)^{2} \cdot(i)^{2}=(-1)(-1)=1$ | $i^{8}=\left(i^{4}\right) \cdot\left(i^{4}\right)=\left(i^{4}\right)^{2}=(1)^{2}=1$ | $i^{12}=\left(i^{4}\right)^{3}=(1)^{3}=1$ |

## I Notice, I Wonder

## I Notice...

## Sample Responses

I notice the answer in each row is the same...

I notice that $i$ to the power of 4 equals 1, which makes simplifying easier...

## I Wonder...

Sample Responses
I wonder if that is always true.

I wonder if there are other patterns.

## Practice

9) $i^{100}=\left(i^{4}\right)^{25}=(1)^{25}=1$ or 100 is a multiple of 4 , so $i^{100}=1$
10) $i^{45}=i^{44} \cdot i=\left(i^{4}\right)^{11}(i)=(1)^{11}(i)=i$ or $i^{45}=i^{44} \cdot i=(1)(i)=i$
11) $i^{67}=i^{64} \cdot i^{3}=\left(i^{4}\right)^{16}\left(i^{2}\right)(i)=(1)^{16}(-1)(i)=-i$ or $i^{67}=i^{64} \cdot i^{3}=(1)(-i)=-i$
