COMPLEX NUMBERS (SAMPLE RESPONSES)

Engage

Not Like the Others

1) Sample Responses	2) Sample Responses
The sandwich is not like the others because	The $\sqrt{-16}$ is not like the others because there
it's not round.	is a negative number inside the radical.
The button is not like the others because it's	The $\sqrt{75}$ is not like the others because it's
not food.	much bigger than the other numbers.
The donut is not like the others because it's	The $\sqrt{9}$ is not like the others because it's the
sweet.	only single-digit radicand.

Explore

Simplify and Justify

3) Simplify: $\sqrt{16} = 4$ because $(4)^2 = 16$	4) Try to simplify: $\sqrt{-16} \neq \pm 4$ because $(4)^2 = 16$ $(-4)^2 = 16$
5) Simplify: $\sqrt{20}$	6) Try again to simplify: $\sqrt{-16}$
= $\sqrt{4}\sqrt{5}$	= $\sqrt{16}\sqrt{-1}$
= $2\sqrt{5}$	= $4\sqrt{-1}$

I Notice, I Wonder

I Notice Sample Responses	I Wonder Sample Responses
I notice that the square root of a negative number can't be simplified	I wonder if that is always true.
<i>I notice</i> $\sqrt{-16} \neq -4$ <i>because</i> $(-4)^2$ <i>is</i> +16	I wonder if something squared could equal a negative number.

MY IMAGINARY FRIEND, PART 1

Explain

Practice

7) $\sqrt{-48} = \sqrt{4}\sqrt{-1}\sqrt{12}$	8) $-\sqrt{-36} = -1 \cdot \sqrt{36} \sqrt{-1}$
$=2i\sqrt{4}\sqrt{3}$	$= -1 \cdot 6 \cdot i$
$=2i(2)\sqrt{3}$	=-6i
$=4i\sqrt{3}$	

Extend

Simplify and Justify

$$i^{1} = \sqrt{-1} = i \qquad i^{5} = i^{4} \cdot i = (1)(i) = i \qquad i^{9} = (i^{4})^{2} \cdot i = (1)^{2}(i) = i$$
$$i^{2} = (\sqrt{-1})^{2} = -1 \qquad i^{6} = i^{4} \cdot i^{2} = (1)(-1) = -1 \qquad i^{10} = (i^{4})^{2} \cdot i^{2} = (1)^{2}(-1) = -1$$
$$i^{3} = (i)^{2} \cdot i = (-1)(i) = -i \qquad i^{7} = (i^{2})^{3} \cdot i = (-1)^{3}(i) = -i \qquad i^{11} = (i^{2})^{5} \cdot i = (-1)^{5}(i) = -i$$
$$i^{4} = (i)^{2} \cdot (i)^{2} = (-1)(-1) = 1 \qquad i^{8} = (i^{4}) \cdot (i^{4}) = (i^{4})^{2} = (1)^{2} = 1 \qquad i^{12} = (i^{4})^{3} = (1)^{3} = 1$$

I Notice, I Wonder

I Notice	I Wonder
Sample Responses	Sample Responses
I notice the answer in each row is the same	I wonder if that is always true.
I notice that <i>i</i> to the power of 4 equals 1, which makes simplifying easier	I wonder if there are other patterns.

Practice

9)
$$i^{100} = (i^4)^{25} = (1)^{25} = 1$$
 or 100 is a multiple of 4, so $i^{100} = 1$
10) $i^{45} = i^{44} \cdot i = (i^4)^{11} (i) = (1)^{11} (i) = i$ or $i^{45} = i^{44} \cdot i = (1)(i) = i$
11) $i^{67} = i^{64} \cdot i^3 = (i^4)^{16} (i^2)(i) = (1)^{16} (-1)(i) = -i$ or $i^{67} = i^{64} \cdot i^3 = (1)(-i) = -i$

MY IMAGINARY FRIEND, PART 1

