USER MANUAL—CALCULATIONS (SAMPLE RESPONSES)

Calculating Total Impedance

Use the circuit diagrams below to calculate the total impedance for each circuit. Write your final answer in standard form: a + bi.

Calculating Voltage

Voltage = (Current)(Impedance) is the formula that relates voltage, current, and total impedance. Use this formula in each of the following scenarios to calculate the voltage. Write your final answer in standard form: a + bi.

Question 3	Question 4
What is the voltage in a circuit with current $7 + 5i$ and impedance $8 - 6i$?	What is the voltage in a circuit with current $5+8i$ and impedance $5-8i$?
Voltage = (7+5i)(8-6i)	Voltage = (5+8i)(5-8i)
$= 56 - 42i + 40i - 30i^2$	$= 25 - 40i + 40i - 64i^2$
=56-2i-30(-1)	=25-64(-1)
=56-2i+30	=25+64
=86-2i	= 89
$Voltage = \underline{(86-2i) \ volts}$	Voltage = 89 volts

Calculating Current

Use the formula Voltage = (Current)(Impedance) in each of the following scenarios to calculate the current. Write your final answer in standard form: a + bi.

Question 5

What is the current in a circuit with voltage 2i and impedance 1+i?

$$Current = \frac{Voltage}{Impedance} = \frac{2i}{1+i} \Rightarrow \frac{(2i)}{(1+i)} \cdot \frac{(1-i)}{(1-i)} = \frac{2i-2i^2}{1-i+i-i^2} = \frac{2i-2(-1)}{1-(-1)} = \frac{2i+2}{1+1}$$
$$= \frac{2+2i}{2} = \frac{2}{2} + \frac{2i}{2} = 1+i$$

 $Current = (1+i) \ amps$

Definition

- The **complex conjugate** of a + bi is a bi.
 - \circ For example, 9+4i is the complex conjugate of 9-4i.

Use the complex conjugate and the voltage formula (from above) to calculate the current. Write your final answer in standard form: a + bi.

Question 6

What is the current in a circuit with voltage 2+5i and impedance 5+2i?

$$Current = \frac{2+5i}{5+2i} \Rightarrow \frac{(2+5i)}{(5+2i)} \cdot \frac{(5-2i)}{(5-2i)} = \frac{10-4i+25i-10i^2}{25-10i+10i-4i^2} = \frac{10+21i-10(-1)}{25-4(-1)} = \frac{10+21i+10}{25+4}$$
$$= \frac{20+21i}{29} = \frac{20}{29} + \frac{21i}{29} = \frac{20}{29} + \frac{21}{29}i$$

$$Current = \left(\frac{20}{29} + \frac{21}{29}i\right) amps$$