CARD MATCHING

Cut out the following cards. Then, group the example card and equivalent expression cards with the property they demonstrate.

Power of a Power When taking a power to a power, keep the base and multiply the exponents.	Power of a Product Take each base to the power ("distribute" the power because a and b are multiplied, not \pm).	Product of Powers When multiplying like bases, keep the base and add the exponents.
Zero Exponent Any non-zero number to the $0^{\text {th }}$ power is one.	Negative Exponents When the exponent is negative, move the base to the other side of the fraction bar and change the sign of the exponent.	Quotient of Powers When dividing like bases, keep the base and subtract the exponents.
Power of a Quotient Take each base to the power ("distribute" the power because a and b are divided, not \pm).	$\begin{aligned} (-3 \cdot 5)^{2} & =(-3)^{2} \cdot 5^{2} \\ & =9 \cdot 25 \\ & =225 \end{aligned}$	$\begin{aligned} (3)^{-2} & =\frac{1}{3^{2}} \\ & =\frac{1}{9} \end{aligned}$
$\begin{aligned} \frac{3^{12}}{3^{8}} & =3^{4} \\ & =81 \end{aligned}$	$\begin{aligned} \left(\frac{4}{5}\right)^{2} & =\frac{4^{2}}{5^{2}} \\ & =\frac{16}{25} \end{aligned}$	$\begin{aligned} \left(2^{3}\right)^{2} & =2^{6} \\ & =64 \end{aligned}$

$\begin{aligned} (-2)^{-1} \cdot(-2)^{4} & =(-2)^{3} \\ & =8 \end{aligned}$	$(-5,287)^{0}=1$	
$a^{m} \cdot b^{m}$	$1, a \neq 0$	$\frac{1}{a^{m}}, a \neq 0$
a^{m-n}	$\left(a^{m}\right)^{n}$	$(a \cdot b)^{m}$
$a^{-m}, a \neq 0$	$a^{0}, a \neq 0$	$\left(\frac{a}{b}\right)^{m}$
$\frac{a^{m}}{b^{m}}$	$\frac{a^{m}}{a^{n}}$	$a^{m \cdot n}$
$a^{m} \cdot a^{n}$	a^{m+n}	

