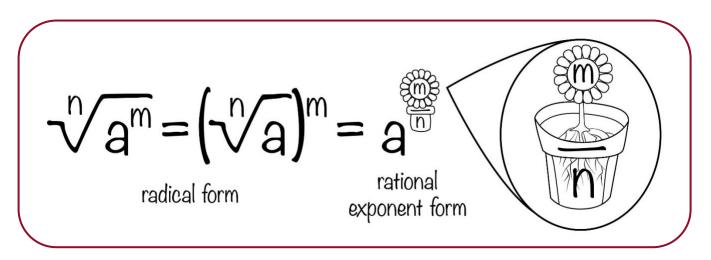
## **RADICALS AND RATIONAL EXPONENTS: GUIDED NOTES**


## Rewriting

$$\sqrt[n]{x} = x^{\frac{1}{2}}$$

 $x^{\frac{1}{n}}$  n<sup>th</sup> root, where *n* is the index

 $\sqrt{x} = x^{\frac{1}{2}}$  square root

 $\sqrt[3]{8} = 2$  because  $2^3 = 8$ 



Rewrite each expression in rational exponent form.

- **1**)  $\sqrt[3]{10} =$
- **2)**  $(\sqrt[7]{2a})^4 =$

Rewrite each expression in radical form.

**3)** 
$$k^{\frac{5}{2}} =$$

**4)**  $2x^{\frac{4}{3}} =$ 

**RADICAL YET RATIONAL, PART 1** 



## Simplifying

Simplify each of the following expressions. Write your final answer using the given notation.

- The power inside the radical must be less than the index.
- Final answers must have positive exponents.
- **5)**  $\left(-64x^2y \cdot xy^{-7}\right)^{\frac{1}{3}} =$

6) 
$$\sqrt[4]{32x^8y^9z^7} =$$

