WAVES UNIT VOCABULARY

Word	Definition	Examples
Oscillation	Consistently repeating vibration or motion.	
Medium	A physical substance that carries the wave. The wave medium always returns to its original position after the wave passes through it.	
Transverse Waves	Bouncy waves when the medium vibrates up and down.	
Longitudinal Waves	Stretchy waves when the medium expands (stretches) and compresses (squeezes).	
Wave Pulse	A short duration vibration that creates a single displacement traveling through the medium.	
Driven Wave	A constant oscillation that creates a continuous displacement or vibration of the medium.	
Velocity	The speed that something travels at. If we know the speed something is traveling at and the total time the object was traveling, we can determine the distance it traveled.	
Wavelength λ "lambda"	The horizontal distance between the start and end points of one full wave cycle.	

Word	Definition	Examples
Amplitude A	The vertical height of a wave, measured from the center line to the top of a peak or the bottom of a trough.	
Frequency <i>f</i>	The number of wavelengths that passes a fixed point in one second.	
The Wave Equation	 Velocity = Frequency · Wavelength Velocity is represented by a V. Frequency is represented by <i>f</i>. Wavelength is represented by λ, which is the Greek letter "lambda." 	
Triangle of Power	Visual representation of equations to calculate velocity, frequency, and distance of wavelengths.	
Inverse Relationship	For two interconnected quantities, as one gets bigger, the other gets proportionally smaller, and vice- versa.	
Interference	When two or more waves combine additively.	
Constructive Interference	Waves combine <u>peak</u> + <u>peak</u> or <u>trough</u> + <u>trough</u> to produce a wave of larger amplitude.	

Word	Definition	Examples
Destructive Interference	Waves combine <u>peak</u> + <u>trough</u> so	
	that amplitudes cancel one another.	
Interference Patterns	When two or more freely traveling	
	waves interfere and merge via	
	constructive and destructive	
	interference.	
Reflection	When a wave bounces off a barrier	
	and changes direction of travel. A	
	wave that encounters a hard barrier	
	is flipped on itself.	
Phase	The position of one wave in relation to another.	
In Phase	Peaks and troughs directly line up.	
Out of Phase	Peaks and troughs do not line up.	
180° Out of Phase	Peaks and troughs are exactly	
	opposite.	
Resonance	When a system vibrates at a single	
	frequency, we call this a standing	
	wave. Only wavelengths that fit	
	within an object will resonate.	
Refraction	The fact or phenomenon of light,	
	radio wave, etc. being deflected in	
	passing obliquely through the	
	interface between one medium and	
	another through a medium of	
	varying density.	
Absorption	The process or action by which one	
	thing soaks up or blots out another.	
Emission	Something that has been emitted,	
	released, or discharged.	

