WAVE UNIT VOCABULARY (TEACHER'S GUIDE)

Word	Definition	Examples
Oscillation	Consistently repeating vibration or motion.	
Medium	A physical substance that carries the wave. The wave medium always returns to its original position after the wave passes through it.	Almost any kind of matter: air, water or other liquids, or solids, such as steel or rock.
Transverse Waves	Bouncy waves; the medium vibrates up and down.	Wave Motion Particle Motion
Longitudinal Waves	Stretchy waves; the medium compresses (squeezes) and expands (stretches).	Compression
Wave Pulse	A short-duration vibration creates a single displacement, which then travels through the medium as a wave.	
Driven Wave	A constant oscillation that creates a continuous displacement or vibration of the medium.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Velocity	The speed at which something travels.	Velocity = distance/time
	If we know the speed at which something was traveling and the total time the object was moving, we can determine the distance it traveled.	Distance = velocity · time

Wavelength \(\bar{\lambda} \) "lambda"	The horizontal distance between start and endpoints of one full wave cycle.	Wavelength A(lambda)
Amplitude A	The vertical height of a wave, measured from the center line to the top of a peak or the bottom of a trough.	Amplitude
Frequency f	The number of wavelengths that passes a fixed point in one second.	
The Wave Equation	 Velocity = Frequency · Wavelength Velocity is represented by a V. Frequency is represented by f. Wavelength is represented by λ, which is the Greek letter "lambda." 	$v = f \lambda$
Triangle of Power	Visual representation of equations to calculate velocity, frequency, and distance of wavelengths.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Inverse Relationship	For two interconnected quantities, as one gets bigger, the other gets proportionally smaller, and vice versa.	$f \rightarrow \lambda \qquad \lambda \rightarrow f$
Interference	When two or more waves combine additively.	

Constructive Interference	Waves combine <u>peak</u> + <u>peak</u> or <u>trough</u> + <u>trough</u> to produce a wave of larger amplitude.	Peak Wavelength Amplitude
Destructive Interference	Waves combine <u>peak</u> + <u>trough</u> so that amplitudes cancel one another.	
Interference Patterns	When two or more freely traveling waves interfere and merge via constructive and destructive interference.	
Reflection	When a wave bounces off a barrier and changes direction of travel; a wave that encounters a hard barrier is flipped on itself.	
Phase	The position of one wave in relation to another.	
In Phase	Peaks and troughs directly line up.	
Out of Phase	Peaks and troughs do not line up.	
180° Out of Phase	Peaks and troughs are exactly opposite.	
Resonance	When a system vibrates at a single frequency, we call this a standing wave. Only wavelengths that fit within an object will resonate.	

Refraction	The fact or phenomenon of light, radio waves, etc. being deflected in passing obliquely through the interface between one medium and another through a medium of varying density.	
Absorption	The process or action by which one thing soaks up or blots out another.	
Emission	Something that has been emitted, released, or discharged.	