GUIDED NOTES (TEACHER GUIDE)

Find the solution(s) to each of the following equations.

1) $-2(6 n+1)^{3}+4=-6$

Teacher	Students
How do we isolate a variable?	Use inverse operations.
Remember that when we solve, we go backwards through the order of operations. Do we have any addition or subtraction outside of the parentheses we can undo?	Yes, we need to start by subtracting 4 from both sides. $\begin{aligned} -2(6 n+1)^{3}+4 & =-6 \\ -4 & -4 \\ -2(6 n+1)^{3}= & -10 \end{aligned}$
Continuing to look outside of the parentheses, which operation should we undo next?	Divide both sides by -2 . $\begin{aligned} \frac{-2(6 n+1)^{3}}{-2} & =\frac{-10}{-2} \\ (6 n+1)^{3} & =5 \end{aligned}$
What's the opposite of a power/exponent?	a radical/root
Let's take the third root of both sides, since that's the opposite of a third power.	$\begin{array}{r} \sqrt[3]{(6 n+1)^{3}}=\sqrt[3]{5} \\ 6 n+1=\sqrt[3]{5} \end{array}$
Now, our parentheses are also gone, so we start back at the bottom of order of operations. Let's subtract 1 from both sides. Remember that we always write the radical on the end, so that minus 1 goes in front of the $\sqrt[3]{5}$.	$\begin{aligned} 6 n+1 & =\sqrt[3]{5} \\ -1 & -1 \\ 6 n & =-1+\sqrt[3]{5} \end{aligned}$
Now, let's divide both sides by 6 . And we get a final answer of $n=\frac{-1+\sqrt[3]{5}}{6}$.	$\begin{aligned} & \frac{6 n}{6}=\frac{-1+\sqrt[3]{5}}{6} \\ & n=\frac{-1+\sqrt[3]{5}}{6} \end{aligned}$

2) $3(x+1)^{\frac{4}{3}}=48$

Teacher		
What operation do we need to undo first?	Students	

Teacher

Students

So, let's raise each side to the power of threefourths.

Remember that we need to write \pm since we've technically taken an even root.

$$
(x+1)^{\frac{4}{3}}=16
$$

exponential	radical
$(x+1)^{\frac{4}{3}}=16$	$(\sqrt[3]{x+1})^{4}=16$
$\left((x+1)^{\frac{4}{3}}\right)^{\frac{3}{4}}=(16)^{\frac{3}{4}}$	
$x+1= \pm(16)^{\frac{3}{4}}$	

Now, let's simplify the right-hand side of this equation by rewriting 16 as a base to a power.	$\begin{aligned} & x+1= \pm(16)^{\frac{3}{4}} \\ & x+1= \pm\left(2^{4}\right)^{\frac{3}{4}} \end{aligned}$	
Continuing to simplify the right-hand side...	$\begin{aligned} & x+1= \pm\left(2^{4}\right)^{\frac{3}{4}} \\ & x+1= \pm 2^{3} \\ & x+1= \pm 8 \end{aligned}$	
Now, let's subtract 1 from both sides. Again, notice we're putting the plus or minus stuff on the end to continue that good habit.	$\begin{gathered} x+1= \pm 8 \\ -1-1 \\ x=-1 \pm 8 \end{gathered}$	
We can simplify further, so we should. We get a final answer of $x=7$ and $x=-9$.	$\begin{aligned} & x=-1+8 \text { and } x=-1-8 \\ & x=7 \text { and } x=-9 \end{aligned}$	
Now, let's go back and solve again, but this time using radicals.	$(x+1)^{\frac{4}{3}}=16$	
	exponential	radical
	$(x+1)^{\frac{4}{3}}=16$	$(\sqrt[3]{x+1})^{4}=16$
We need to undo the power of 4 . What's the opposite of a power of 4 ?	a fourth root	

Students

So, let's take the fourth root of each side.

Don't forget the \pm with that even root.
$(x+1)^{\frac{4}{3}}=16$

Take each side to the power of 3 .

$$
\sqrt[3]{x+1}= \pm 2
$$

$$
(\sqrt[3]{x+1})^{3}=(\pm 2)^{3}
$$

$$
x+1= \pm 8
$$

Now, let's subtract 1 from both sides.
Again, notice we're putting the plus or minus
stuff on the end to continue that good habit.

$$
\begin{gathered}
x+1= \pm 8 \\
-1-1 \\
x=-1 \pm 8
\end{gathered}
$$

We can simplify further, so we should.
We get a final answer of $x=7$ and $x=-9$.
$x=-1+8$ and $x=-1-8$
$x=7$ and $x=-9$

Notice that we got the same answer each time.
3) $(x+3)^{\frac{1}{4}}-8=-6$

Teacher	Students	
If our goal is to solve for x, what should be our first step?	Add 8 to both sides.$\begin{aligned} (x+3)^{\frac{1}{4}}-8 & =-6 \\ +8 & +8 \\ (x+3)^{\frac{1}{4}} & =2 \end{aligned}$	
Let's draw a T-chart under the equation and label each side.	$(x+3)^{\frac{1}{4}}=2$	
	exponential	radical
What we've been given is already written with rational exponents, so we'll copy that in the first column.	$(x+3)^{\frac{1}{4}}=2$	
	exponential	radical
	$(x+3)^{\frac{1}{4}}=2$	
A one-fourth power is what kind of root?	a fourth root	
So, let's rewrite the equation with a radical and put it in the second column.	$(x+3)^{\frac{1}{4}}=2$	
	exponential	radical
	$(x+3)^{\frac{1}{4}}=2$	$\sqrt[4]{x+3}=2$
Looking at the rational exponents column, what is the opposite of a one-fourth power?	Take both sides to the power of 4 .$(x+3)^{\frac{1}{4}}=2$	
	exponential	radical
	$\begin{aligned} (x+3)^{\frac{1}{4}} & =2 \\ \left((x+3)^{\frac{1}{4}}\right)^{4} & =(2)^{4} \\ x+3 & =16 \end{aligned}$	$\sqrt[4]{x+3}=2$

Teacher	Students
What should our next step be? And we get a final answer of $x=13$.	Subtract 3 from both sides. $\begin{array}{r} x+3=16 \\ -3-3 \\ x=13 \end{array}$
Now, let's solve this again, but this time using radicals.	$(x+3)^{\frac{1}{4}}=2$
	exponential radical
	$(x+3)^{\frac{1}{4}}=2$ $\sqrt[4]{x+3}=2$
What's the opposite of a fourth root?	Take both sides to the power of 4 . $(x+3)^{\frac{1}{4}}=2$
	exponential \quad radical
	$(x+3)^{\frac{1}{4}}=2 \quad$$\sqrt[4]{x+3}$ $=2$ $(\sqrt[4]{x+3})^{4}$ $=(2)^{4}$ $x+3$ $=16$
What should our next step be? And we get a final answer of $x=13$.	Subtract 3 from both sides. $\begin{array}{r} x+3=16 \\ -3-3 \\ x=13 \end{array}$
Wait a minute. I saw an even root in our problem-why does our answer not have a plus or minus symbol?	The fourth root was already in the problem-we did not take an even root. We were given an even root, so there is only one solution.

4) $-31=-4(3 m)^{\frac{2}{3}}+5$

Teacher	Students
Where should we start?	Subtract 5 from both sides.
$-31=-4(3 m)^{\frac{2}{3}}+5$	
-5	-5
	$-36=-4(3 m)^{\frac{2}{3}}$

What operation should we perform next?
Divide both sides by -4 .

$$
\begin{aligned}
\frac{-36}{-4} & =\frac{-4(3 m)^{\frac{2}{3}}}{-4} \\
9 & =(3 m)^{\frac{2}{3}}
\end{aligned}
$$

Now, we see that rational exponent, so for our notes, we're going to make a table to show both methods.

$$
9=(3 m)^{\frac{2}{3}}
$$

Fill in each column with that first line.

Consider rewriting 9 as a base to a power in the rational exponents column.

When we write that radical, should the power go inside or outside of the radical?

Let's solve the equation using rational exponents. What is the opposite of a twothirds power?

Don't forget the \pm; we did take an even root.
The power should go on the outside.

$9=(3 m)^{\frac{2}{3}}$	
exponential	radical
$3^{2}=(3 m)^{\frac{2}{3}}$	$9=(\sqrt[3]{3 m})^{2}$

Take both sides to the power of three-
halves.

$$
9=(3 m)^{\frac{2}{3}}
$$

exponential	radical
$3^{2}=(3 m)^{\frac{2}{3}}$	$9=(\sqrt[3]{3 m})^{2}$

$$
\begin{aligned}
\left(3^{2}\right)^{\frac{3}{2}} & =\left((3 m)^{\frac{2}{3}}\right)^{\frac{3}{2}} \\
\pm 3^{3} & =3 m \\
\pm 27 & =3 m
\end{aligned}
$$

Students

| Now, let's divide both sides by 3 and get a final |
| :--- | :--- |
| answer of positive 9 and negative 9. |

GUIDED NOTES (MODEL NOTES)

Find the solution(s) to each of the following equations.

$$
\text { 1) } \begin{aligned}
-2(6 n+1)^{3}+4 & =-6 \\
-4 & -4 \\
\frac{-2(6 n+1)^{3}}{-2} & =\frac{-10}{-2} \\
(6 n+1)^{3} & =5 \\
\sqrt[3]{(6 n+1)^{3}} & =\sqrt[3]{5} \\
6 n+1 & =\sqrt[3]{5} \\
-1 & -1 \\
6 n & =-1+\sqrt[3]{5} \\
\frac{6 n}{6} & =\frac{-1+\sqrt[3]{5}}{6} \\
n & =\frac{-1+\sqrt[3]{5}}{6}
\end{aligned}
$$

2)

$$
\begin{aligned}
& 3(x+1)^{\frac{4}{3}}=48 \\
& \frac{3(x+1)^{\frac{4}{3}}}{3}=\frac{48}{3}
\end{aligned}
$$

$$
(x+1)^{\frac{4}{3}}=16
$$

$$
x=-1+8 \text { and } x=-1-8
$$

$$
x=7 \text { and } x=-9
$$

3) $(x+3)^{\frac{1}{4}}-8=-6$

$$
+8+8
$$

$$
(x+3)^{\frac{1}{4}}=2
$$

exponential
$(x+3)^{\frac{1}{4}}=2$
$\left((x+3)^{\frac{1}{4}}\right)^{4}=(2)^{4}$
$x+3=16$
$-3-3$
$x=13$

| radical |
| :---: | :---: |
| $\sqrt[4]{x+3}=2$ |
| $(\sqrt[4]{x+3})^{4}=(2)^{4}$ |
| $x+3=16$ |
| $-3-3$ |

4)

$$
\begin{aligned}
& -31=-4(3 m)^{\frac{2}{3}}+5 \\
& -5 \\
& \frac{-36}{-4}=\frac{-4(3 m)^{\frac{2}{3}}}{-4}
\end{aligned}
$$

$$
\begin{gathered}
\text { exponential } \\
\hline 9=(3 m)^{\frac{2}{3}} \\
\left(3^{2}\right)^{\frac{3}{2}}=\left((3 m)^{\frac{2}{3}}\right)^{\frac{3}{2}} \\
\pm 3^{3}=3 m \\
\pm 27=3 m \\
\pm 9=m
\end{gathered}
$$

radical	
9	$=(\sqrt[3]{3 m})^{2}$
$\sqrt{9}$	$=\sqrt{(\sqrt[3]{3 m})^{2}}$
± 3	$=\sqrt[3]{3 m}$
$(\pm 3)^{3}$	$=(\sqrt[3]{3 m})^{3}$
± 27	$=3 m$
± 9	$=m$

