GRAPHING RATIONAL FUNCTIONS: GUIDED NOTES

Definitions
Rational function: $\frac{p(x)}{q(x)}=\frac{a_{m} x^{m}+\ldots+a_{0}}{b_{n} x^{n}+\ldots+b_{0}}$
Vertical asymptote: a line that a curve approaches and never crosses, because we can't divide by zero

Horizontal asymptote: a line with a slope of zero that the curve approaches and sometimes crosses*

Slant (oblique) asymptote: a line with a slope other than zero (and is not undefined) that the curve approaches and sometimes crosses*

*The curve is allowed to cross horizontal and slant asymptotes.

- Rational functions can have $0,1,2, \ldots$ vertical asymptotes.
- Rational functions can have 0 or 1 horizontal asymptotes.
- Rational functions can have 0 or 1 slant asymptotes.

How to Graph a Rational Function

Step 1) Find the asymptote(s).

- If the degree on the top is greater than the degree on the bottom, then the ratio for a horizontal asymptote would be a number over zero, which is undefined. Because of this, there is no horizontal asymptote when $m>n$.
- If the degree on the top is only 1 greater than the degree on the bottom, then you have a slant asymptote.

Step 2) Sketch the asymptote(s) with dashed lines.

- Do not worry about sketching slant asymptotes at this time.

Step 3) Make a table.

- Pick x-values based on the vertical asymptote(s).
- If there is no vertical asymptote, then let $x=0$ be the middle number in your table.

Step 4) Plot points and connect dots.

Graph each function. Be sure to label the asymptote(s).

1) $y=\frac{8 x}{x^{2}-9}$

2) $y=\frac{x^{2}+4 x}{2 x-1}$

