SOLVING EXPONENTIAL EQUATIONS: GUIDED NOTES

Notation

Common Logarithm

$\log _{10} x=\log x$

Natural Logarithm

$\log _{e} x=\ln x$
(where e is Euler's number: 2.7...)

Inverse Operations: Exponential and Logarithmic

$$
\begin{array}{ll}
10^{\log (x)}=x & 2^{\log _{2} x}=x \\
\ln \left(e^{x}\right)=x & \log _{5}\left(5^{x}\right)=x
\end{array}
$$

Examples

Solve each of the following equations.

1) $3^{x-7}=27^{2 x}$
2) $4-2 e^{x}=-23$
3) $10^{-12 x}+6=100$

Change of Base

$$
\log _{b} a=\frac{\log a}{\log b} \quad \log _{b} a=\frac{\ln a}{\ln b}
$$

Use the change of base formula to rewrite the logarithmic expression below.
4) $\log _{3} 10=$

