
### Surface Area = 2B + Ph



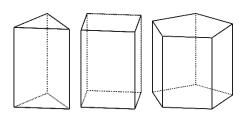
Surface  $Area = B + \frac{1}{2}Pl$ 



*Sphere* : *Surface*  $Area = 4\pi r^2$ 

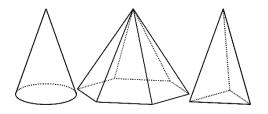


*Hemisphere*: *Surface*  $Area = 3\pi r^2$ 



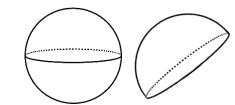






# SURFACE AREA

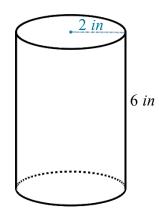





## SURFACE AREA

### **OF REGULAR PYRAMIDS**



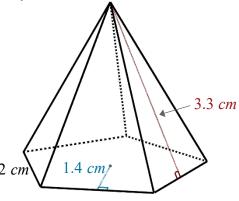

# SURFACE AREA

#### **OF OTHER SOLIDS**



| The surface | area, $\it S$ , of a $\_$  | _ is |
|-------------|----------------------------|------|
| the         | , $B$ , times $\dot{a}$    | 2    |
| plus the    |                            |      |
| The area o  | f the lateral faces is the | 9    |
|             | , $P$ , tim                | es   |
| the         | of the prism $h$           |      |

| Exam   | n  | le |
|--------|----|----|
| LAGIII | יץ | C  |



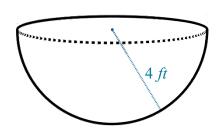

$$S = 2B + Ph$$

| The sur | face area, $S$ , of a |          |
|---------|-----------------------|----------|
| is the  |                       | B , plus |
| the _   |                       | <u> </u> |

The area of the lateral faces is one-half times the  $\_$ \_\_\_\_\_\_, P , times the  $\_$ \_\_\_\_\_ of the pyramid, l .

### Example:




$$S = B + \frac{1}{2}Pl$$

### The surface area, S, of a \_\_\_\_\_ is

the \_\_\_\_\_\_,  $r^2$ , times  $4\pi$  .

The surface area, S , of a \_\_\_\_\_ is the \_\_\_\_\_ ,  $r^2$  , times  $3\pi$  .

#### Example:



$$S = 3\pi r^2$$