PROOF PROCESS

To develop the law of cosines, begin with $\triangle A B C$. From vertex B, altitude k is drawn and separates side b into segments $b-x$ and x.

1) Why can the segments be represented in this way?

2) The altitude separates $\triangle A B C$ into two right triangles. Use the Pythagorean theorem to write two equations, one relating $b-x, c$, and k, and another relating a, k, and x.
3) Notice that both equations contain k^{2}.
a) Why?
b) Solve each equation for k^{2}.
4) Since both of the equations in Question 3 are equal to k^{2}, they can be set equal to each other.
a) Why is this true?
b) Set the equations equal to each other to form a new equation.
5) Notice that the equation in Question 4 involves x. However, x is not a side of $\triangle A B C$. Attempt to rewrite the equation in Question 4 so that it does not include x. Hint, begin by expanding the quantity $(b-x)^{2}$.
6) Now solve the equation for c^{2}.
7) The equation still involves x.
a) To eliminate it from the equation, write an equivalent expression for x involving both $\cos (C)$ and x.
b) Why use $\cos (C)$?
8) Solve the equation from Question 7 for x.
a) Why solve for x ?
9) Substitute the equivalent expression for x into the equation from Question 6 and simplify. The resulting equation contains only sides and angles of $\triangle A B C$. This equation is called the Law of Cosines.
