MATRIX OPERATIONS: GUIDED NOTES

Definitions

Matrix: A rectangular arrangement of terms into rows and columns; plural = matrices.
Element: Each term (or number) in the matrix.
Dimensions: Describe the size and shape of a matrix; the number of rows (m) by the number of columns (n); written as $m \times n$ and read as " m by n."

Scalar multiplication: Multiplying each element of the matrix by the scalar value (the number in front of the matrix).

Find $3 A=3\left[\begin{array}{rrr}3 & 4 & 7 \\ -1 & 0 & 2\end{array}\right]=$ element by 3
*You can multiply any matrix by a scalar.

Examples

Perform the indicated matrix operations.
You can add or subtract matrices only if they share the same dimensions because you add or subtract corresponding elements.

1) $\left[\begin{array}{ll}5 & -2 \\ 7 & -6\end{array}\right]+\left[\begin{array}{rr}-5 & -8 \\ 3 & 1\end{array}\right]=$
2) (2) $\left[\begin{array}{l}4 \\ 7 \\ 1\end{array}\right]-3\left[\begin{array}{l}2 \\ 0 \\ 9\end{array}\right]=$

Multiplying Matrices

You can multiply matrices only when the number of columns of the first matrix equals the number of rows of the second matrix.

$$
\text { let } A=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \quad \text { and } B=\left[\begin{array}{c}
p \\
q \\
r
\end{array}\right] \quad \begin{gathered}
A \quad B \quad A B \\
m \times n \quad n \times k
\end{gathered} \quad m \times k
$$

dimensions: a 2×3 matrix multiplied by a 3×1 matrix will result in a 2×1 matrix

$$
A B=\left[\begin{array}{l}
a p+b q+c r \\
d p+e q+f r
\end{array}\right]
$$

Examples

Perform the indicated matrix operations.
3) $\left[\begin{array}{ccc}4 & 0 & 8 \\ 3 & -2 & 5\end{array}\right] \cdot\left[\begin{array}{cc}-1 & 7 \\ 6 & 10 \\ -3 & 0\end{array}\right]=$
4) To calculate a basketball player's overall rating, a computer program multiplies the rating for each attribute by the weights of each attribute to yield an overall player rating (OVR).

$$
[\text { Attribute Ratings }] \cdot[\text { Weights }]=[\text { OVR }]
$$

Because we're going to calculate the ratings by hand, we'll look at a much smaller set of data and compare only two players, LeBron James and Michael Jordan. Let's say that LeBron James has an 84 defense rating, a 66 rebounding rating, and an 89 scoring rating. Michael Jordan has an 86 defense rating, a 68 rebounding rating, and an 86 scoring rating. The weights for those categories are as follows: $50 \%, 30 \%$, and 20%. Use matrix multiplication to determine which player has the higher OVR.

