GUIDED NOTES (MODEL NOTES)

Factor each polynomial.

3)
$$x^{2} + 10x + 24$$
 GCF:1
 $(x+4)(x+6)$ $a:1\cdot1$
 $c:1\cdot24, 2\cdot12, 3\cdot8, 4\cdot6$
 $sum of 10$
 $\uparrow \uparrow$
 $+c |b|$
4) $x^{2} - 16$ GCF:1
 $x^{2} + 0x - 16$ $a:1\cdot1$
 $(x+4)(x-4)$ $c:1\cdot16, 2\cdot8, 4\cdot4$
 $diff. of 0$
 $\uparrow \uparrow$
 $-c |b|$

- 1) Find and factor out the GCF.
- 2) Find the factors of *a*.
- **3)** Find the factors of |c|.
- 4) Decide if you need a sum or difference of |b|.
- If +c, then you need a sum.
- If -c, then you need a **difference**.
- 5) Find the right pair of a and c values such that the products of the factors of a and c have a sum/difference of |b|.
- 6) Write the two factors.
- Coefficients are from the factors of *a*.
- Constants are from the factors of *c*.
- Use c and b to determine the \pm symbols.
 - \Box If +*c*, then the signs are the **same**.
 - \Box If -c, then the signs are **different**.
 - $\hfill\square$ The bigger product gets the same sign as b .

GUIDED NOTES (MODEL NOTES)

Factor each polynomial.

1) $5x^{2} + 23x + 24$ GCF:1 (1x)(5x) a:1.5 (1x 3)(5x 8) c:1.24, 2.12, 3.8, 4.6 +15x sum of 23 +8x $\uparrow \uparrow$ +c |b| (x+3)(5x+8)

2)
$$12x^{2} + 51x - 45$$
 GCF:3
 $3(4x^{2} + 17x - 15)$ $a:1 \cdot 4, 2 \cdot 2$
 $3(x+5)(4x-3)$ $c:1 \cdot 15, 3 \cdot 5$
 $diff. of 17$
 $-3x$ \uparrow \uparrow
 $-c$ $|b|$

3)
$$-12x^{2} + x + 20$$
 GCF: -1
 $-1(12x^{2} - x - 20)$ a: 1.12, 2.6, 3.4
 $-1(3x - 4)(4x + 5)$ c: 1.20, 2.10, 4.5
 $-16x$ diff. of 1
 $+15x$ \uparrow \uparrow
 $-c$ |b|

If a > 0, then the GCF is positive. If a < 0, then the GCF is negative.

