Name: _____

HEAT TRANSFER ACTIVITY

How does heat energy flow from hot metal to room temperature water?

Objective: Determine flow of energy from hot metal to water.

Hypothesis:

Materials: 3 pipe cleaners, 30 washers, graduated cylinder, thermometer (measured in Celsius), 1 foam cup, stopwatch

Procedure:

- 1. Fasten the washers to the pipe cleaners.
- 2. Place each system (one at a time) in boiling water for 3 minutes.
- 3. Meanwhile pour 50 mL of water in a cylinder and then pour in a foam cup. Read and

record the initial temp.

- 4. Remove the washers using tongs. Shake off excess water. Put in the water.
- 5. Every minute for five minutes read and record the temperature.

# washers	Mass water (m)	Specific heat of water (c)	Initial temp (°C)	1 min	2 min	3 min	4 min	5 min	ΔT (high – Iow)	Energy transferred = cm ΔT
30	.050 kg	4186								

Data:

Analysis:

- 1. Explain the flow of energy in this system.
- 2. Gather the energy transferred (for all three) from two other groups. How do their numbers compare with yours?

THE COLD, HARD TRUTH

- 3. Average your value of energy transfer with the three you gathered from other groups.
- 4. What are some sources of error for this experiment?
- 5. Construct a line graph, on a separate sheet of graph paper, of temperature over time.

Conclusion: Does the data support the hypothesis? Explain.

