Given: 9x - 6 = 5x + 24

Prove: *x*= 7.5

Statement:	Reason:
1.	1. Given
2.	2. Subtraction Property
3.	3. Addition Property
4. $x = 7.5$	4.

Given: 3(x+1) = 5 + x

Prove: x = 1

Statement:	Reason:
1. $3(x+1)=5+x$	1.
2.	2. Distributive Property
3. $2x+3=5$	3.
4. $2x = 2$	4. Subtractive Property
5. $x = 1$	5.

Given: $\frac{x}{6} + 2 = 9$ Prove: x = 42

Statement:	Reason:
1. $\frac{x}{6} + 2 = 9$	1.
2. $x+12=54$	2. Multiplication Property
3.	3.

Given: 3(7-x) = -x + 2x + 37

Prove: x = -4

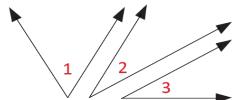
Statement:	Reason:
1. $3(7-x)=-x+2x+37$	1. Given
2. 21 - 3x = -x + 2x + 37	2.
3.	3. Distributive Property
4.	4.
5.	5. Subtraction Property
6. $x = -4$	6.

A) Given	F) Division Property	K) Addition Property
A) Given	F) Division Property	L) Subtraction Property
B) Distributive Property	F) Division Property	L) Subtraction Property
c) $21 = 4x + 37$	G) $-16 = 4x$	M) $x = 42$
D) $9x - 6 = 5x + 24$	H) $3x + 3 = 5 + x$	N) $4x - 6 = 24$
E) $21-3x = x+37$	J) $4x = 30$	

Given: $\angle 1$ is a Complement of $\angle 2$

 $\angle 2 \cong \angle 3$

Prove: $\angle 1$ is a Complement of $\angle 3$



Chahamant	D
Statement:	Reason:
1. $\angle 1$ is a Complement of $\angle 2$	1.
2.	2. Given
3. $m \angle 1 + m \angle 2 = 90^\circ$	3.
4.	4. Definition of Congruent Angles
5. $m \angle 1 + m \angle 3 = 90^\circ$	5.
6. $\angle 1$ is a Complement of $\angle 3$	6. Definition of Complementary Angles

Given: $\angle 1$ and $\angle 2$ are Right Angles

Prove: $\angle 1 \cong \angle 2$

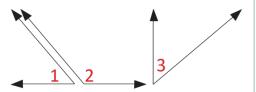
		1
1	2	

Statement:	Reason:
1. ∠1 and ∠2 are Right Angles	1. Given
2. <i>m</i> ∠1 = 90°	2.
3.	3. Definition of Right Angles
4.	4.
 ∠1 ≅ ∠2 	5. Definition of Congruent Angles

Given: $\angle 1$ and $\angle 2$ are Supplementary

 $\angle 3$ and $\angle 2$ are Supplementary

Prove: $\angle 1 \cong \angle 3$

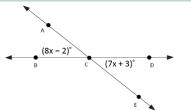


Statement:	Reason:
1.	1. Given
2. $\angle 3$ and $\angle 2$ are Supplementary	2.
3. $m \angle 1 + m \angle 2 = 180^{\circ}$	3. Definition of Supplementary Angles
4. $m \angle 3 + m \angle 2 = 180^{\circ}$	4.
5.	5. Transitive Property
6. $m \angle 1 = m \angle 3$	6.
7.	7. Definition of Congruent Angles

Given: $\angle ACB$ and $\angle DCE$

are Vertical Angles

Prove: x = 5



Statement:	Reason:
1. $\angle ACB$ and $\angle DCE$ are Vertical Angles	1. Given
2. $m \angle ACB = m \angle DCE$	2.
3.	3. Substitution Property
4.	4. Subtraction Property
5. $x = 5$	5. Addition Property

A) Given	F) Substitution Property	L) Vertical Angles Theorem
A) Given	F) Subtraction Property	M) Definition of Right Angles
B) $m \angle 2 = 90^{\circ}$	G) Transitive Property N) Definition of Complementary Ang	
c) ∠1 ≅ ∠3	H) ∠1 and ∠2 are Supplementary	P) Definition of Supplementary Angles
D) $8x-2=7x+3$	J) $x-2=3$	Q) $m \angle 1 = m \angle 2$
E) $m \angle 1 + m \angle 2 = m \angle 3 + m \angle 2$	K) ∠2 ≅ ∠3	R) $m \angle 2 = m \angle 3$

Given: $\overline{CD} = \overline{EF}$

Prove: $\overline{CE} = \overline{DF}$

•	 • 	•	•
С	D	Ε	F

Statement:	Reason:
1. $\overline{CD} = \overline{EF}$	1. Given
$2. \overline{CD} + \overline{DE} = \overline{EF} + \overline{DE}$	2.
3. $\overline{CD} + \overline{DE} = \overline{CE}$	3.
4.	4.
5. $\overline{CE} = \overline{DF}$	5. Transitive Property

Given: I is the Midpoint of \overline{HJ}

Prove: x = 5

•		•		•
Н	2x + 20	I	6x	J

Statement:	Reason:
1. I is the Midpoint of \overline{HJ}	1.
2. HI≅ IJ	2. Definition of Midpoint
3. $\overline{HI} = \overline{IJ}$	3.
4. $2x + 20 = 6x$	4.
5. $20 = 4x$	5. Subtraction Property
6. $x = 5$	6.

Given: $\overline{PR} \cong \overline{RS}$

 $\overline{\mathit{OS}}$ bisects $\overline{\mathit{PQ}}$

Prove: $\overline{RS} \cong \overline{RQ}$

	S
Р	D.
	R
0_/	Ô

Statement:	Reason:
1. $\overline{PR} \cong \overline{RS}$	1. Given
2.	2. Given
3. $\overline{PR} = \overline{RS}$	3.
4.	4.
5. $\overline{RS} = \overline{RQ}$	5. Transitive Property
6.	6.

Given: I is the Midpoint of \overline{BY}

$$\overline{IY} = \overline{IL}$$

 $\overline{\underline{IY}} = \overline{\underline{IL}}$ Prove: $\overline{IL} = \overline{IB}$

	, L	
В	1 /	Υ
•	•	•

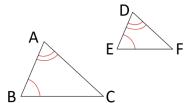
Statement:	Reason:
1.	1. Given
2. $\overline{IY} = \overline{IL}$	2.
3.	3.
4. $\overline{BI} = \overline{IL}$	4.
5. $\overline{IL} = \overline{BI}$	5. Symmetric Property
6.	6. Reflexive Property

A) Given	F) Definition of Midpoint	L) Definition of Segment Bisector
A) Given	G) Definition of Congruent Segments	M) Addition Property
B) Segment Addition Postulate	G) Definition of Congruent Segments	N) Transitive Property
B) Segment Addition Postulate	G) Definition of Congruent Segments	P) Division Property
C) I is the midpoint of \overline{BY}	H) $\overline{DE} + \overline{EF} = \overline{DF}$	Q) Substitution Property
D) $\overline{RS} \cong \overline{RQ}$	J) \overline{OS} bisects \overline{PQ}	$R) \ \overline{PR} = \overline{RQ}$
E) $\overline{IL} = \overline{IB}$	K) $\overline{BI} = \overline{IY}$	

Given: $\angle A \cong \angle D$

 $\angle B \cong \angle E$

Prove: $\triangle ABC \sim \triangle DEF$

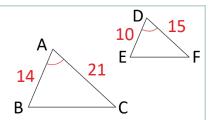


		C
Statement:	Reason:	
1 /1 × /D	4	
1. $\angle A \cong \angle D$	1.	
$2. \angle B \cong \angle E$	2.	
3. $\triangle ABC \sim \triangle DEF$	3.	

Given: $\angle A \cong \angle D$

$$\frac{10}{14} = \frac{15}{21} \left(\text{proportional} \right)$$

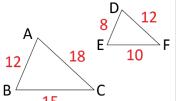
Prove: $\triangle ABC \sim \triangle DEF$



Statement:	Reason:
1. ∠A≅∠D	1. Given
2.	2. Given
3. <i>△ABC</i> ~ <i>△DEF</i>	3.

0:	8	10	12	(
Given:	12 =	15	= ((proportional)

Prove: $\triangle ABC \sim \triangle DEF$



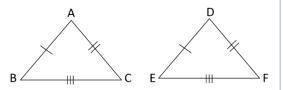
	15
Statement:	Reason:
1. $\frac{8}{12} = \frac{10}{15} = \frac{12}{18}$ (proportional)	1.
2. △ <i>ABC</i> ~△ <i>DEF</i>	2.

A) Given	B) SSS∼ Theorem	D) AA~ Theorem
A) Given	C) SAS~ Theorem	E) $\frac{10}{14} = \frac{15}{21}$
A) Given		

Given: $\overline{AB} \cong \overline{DE}$, $\overline{AC} \cong \overline{DF}$,

and $\overline{BC} \cong \overline{EF}$

Prove: $\triangle ABC \cong \triangle DEF$

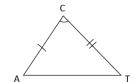


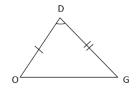
Statement:	Reason:
1. $\overline{AB} \cong \overline{DE}$	1.
2. $\overline{AC} \cong \overline{DF}$	2.
3. $\overline{BC} \cong \overline{EF}$	3.
4. △ABC ≅△DEF	4.

Given: $\overline{AC} \cong \overline{OD}$, $\overline{CT} \cong \overline{DG}$,

and $\angle C \cong \angle D$

Prove: $\triangle CAT \cong \triangle DOG$



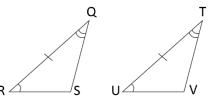


Statement:	Reason:
1. $\overline{AC} \cong \overline{OD}$	1. Given
2. ∠C≅∠D	2.
3.	3. Given
4. $\triangle CAT \cong \triangle DOG$	4.

Given: $\angle R \cong \angle U$, $\angle Q \cong \angle T$,

and $\overline{RQ}\cong \overline{UT}$

Prove: $\triangle QRS \cong \triangle TUV$

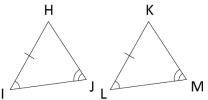


Statement:	Reason:
1. ∠ <i>R</i> ≅ ∠ <i>U</i>	1. Given
2.	2. Given
3. ∠ <i>Q</i> ≅ ∠ <i>T</i>	3.
4.	4.

Given: $\angle I \cong \angle L$, $\angle J \cong \angle M$,

and $\overline{HI} \cong \overline{KL}$

Prove: $\triangle HIJ \cong \triangle KLM$

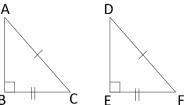


Statement:	Reason:
1. ∠ <i>I</i> ≅ ∠ <i>L</i>	1.
2.	2. Given
3. $\overline{HI} \cong \overline{KL}$	3. Given
4.	4.

Given: $\overline{AC} \cong \overline{DF}$, $\overline{BC} \cong \overline{EF}$,

and $\angle B \cong \angle E$

Prove: $\triangle ABC \cong \triangle DEF$ (Right triangles only)

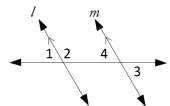


·	A B A C E II F
Statement:	Reason:
1. $\angle B \cong \angle E$	1. Given
2.	2. Given
$3. \overline{BC} \cong \overline{EF}$	3. Given
4.	4.

A) Given	B) SSS Theorem	H) \overline{AC} ≅ \overline{DF}
A) Given	C) SAS Theorem	J) $\overline{CT}\cong \overline{DG}$
A) Given	D) AAS Theorem	K) $\overline{RQ} \cong \overline{UT}$
A) Given	E) HL Theorem	L) △ <i>HIJ</i> ≅△ <i>KLM</i>
A) Given	F) ASA Theorem	M) △ <i>ABC</i> ≅△ <i>DEF</i>
A) Given	G) $\angle J\cong \angle M$	N) ∆ <i>QRS</i> ≅∆ <i>TUV</i>

Given: $\angle 1$ and $\angle 2$ are a Linear Pair

Prove: $\angle 1 \cong \angle 3$



Statement:	Reason:
1. $\angle 1$ and $\angle 2$ are a Linear Pair	1.
2. Line l is parallel to Line m	2.
3. ∠1≅∠4	3.
4. ∠4≅∠3	4.
 ∠1 ≅ ∠3 	5.

Given: $\angle 6 \cong \angle 7$ Prove: $\angle 5 \cong \angle 8$

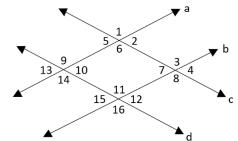
	7
	l n
_	√
7	A
6	8
5 7	

Statement:	Reason:
1. ∠6 ≅ ∠7	1. Given
2. Line l is parallel to Line n	2. Given
3. ∠5 ≅ ∠6	3.
4.	4.
 ∠5 ≅ ∠8 	5.

Given: $a \parallel b$

 $c \parallel d$

Prove: $\angle 13 \cong \angle 4$

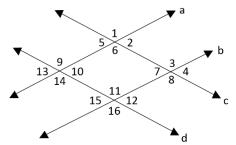


Statement:	Reason:
1. $a \parallel b$	1.
2. c d	2. Given
3. ∠13≅∠15	3.
4. ∠15≅∠12	4. Vertical Angles Theorem
5.	5. Corresponding Angles Theorem
6.	6. Transitive Property

Given: $a \parallel b$

 $c \parallel d$

Prove: $\angle 5 \cong \angle 12$



Statement:	Reason:
1. $a \parallel b$	1.
2.	2. Given
3. ∠5≅∠10	3.
4.	4. Corresponding Angles Theorem
5. ∠5≅∠12	5.

A) Given	D) Transitive Property	H) Vertical Angles Theorem
A) Given	D) Transitive Property	H) Vertical Angles Theorem
A) Given	D) Transitive Property	H) Vertical Angles Theorem
A) Given	E) Alternate Interior Angles Theorem	J) Corresponding Angles Theorem
B) c d	F) ∠7 ≅ ∠8	J) Corresponding Angles Theorem
c) ∠12≅∠4	G) ∠13≅∠4	K) ∠10 ≅ ∠12