LEAP FROG: TEACHER CARDS

If $f(x)$ is increasing, $f^{\prime}(x)$	If $f^{\prime}(x)$ is positive, $f(x)$
(is positive)	(is increasing)
If $f(x)$ is concave up, $f^{\prime \prime}(x)$	If $f^{\prime \prime}(x)$ is positive, $f(x)$
(is positive)	(is concave up)
If $f^{\prime}(x)$ changes from + to at its only zero, $f(x)$	If $f^{\prime}(x)$ changes from - to + at its only zero, $f(x)$
(has an absolute maximum)	(has an absolute minimum)
If $f(x)$ has relative extrema, $f^{\prime}(x)$	If f " (x) changes signs, $f(x)$
(equals zero)	(has a point of inflection)
If $f^{\prime \prime}(x)$ changes signs, $f^{\prime}(x)$	If $f^{\prime}(x)$ is continuous, but not differentiable, $f^{\prime}(x)$
	(has a vertical tangent)
If $f(x)$ has a relative maximum, f " (x)	If $f(x)$ has a relative minimum, $f^{\prime \prime}(x)$
(is negative)	(is positive)
If $f^{\prime}(x)$ has a relative minimum, $f^{\prime \prime}(x)$	If $f^{\prime \prime}(x)$ changes from - to,$+ f^{\prime}(x)$
	(has a relative minimum)

If $f^{\prime}(x)$ changes from + to,$- f(x)$ \qquad (has a relative maximum)	If $f(x)$ has a relative maximum, $f^{\prime}(x)$ \qquad $\overline{\text { (changes from }+ \text { to }- \text {) }}$
If $f^{\prime}(x)$ is decreasing, $f^{\prime \prime}(x)$ \qquad (is negative)	$\text { If } f^{\prime \prime}(x) \text { is negative, } f^{\prime}(x)$
$\text { If } f^{\prime}(x) \text { is negative, } f(x)$	If $f(x)$ is decreasing, $f^{\prime}(x)$ \qquad (is negative)
If $f^{\prime}(x)$ is increasing, $f^{\prime \prime}(x)$ \qquad (is positive)	If $f^{\prime \prime}(x)$ is positive, $f^{\prime}(x)$ (is increasing)
If $f^{\prime}(x)$ changes from - to,$+ f(x)$ $\overline{\text { (has a relative minimum) }}$	If $f(x)$ has a relative minimum, $f^{\prime}(x)$ \qquad $\overline{\text { (changes from }- \text { to }+ \text {) }}$
If $f^{\prime}(x)$ has a relative maximum, $f^{\prime \prime}(x)$ $\overline{\text { (changes from }+ \text { to }-)}$	If $f^{\prime \prime}(x)$ changes from + to,$- f^{\prime}(x)$ \qquad
If $f(x)$ is concave down, $f^{\prime \prime}(x)$ \qquad (is negative)	If $\frac{f "(x) \text { is negative, } f(x)}{\text { (is concave down) }}$

