## BENEFITS OF RANDOM DISCRETE VARIABLES (MODEL NOTES)

## Definitions

- Random variables: a numerical representation of an outcome from a random experiment
- Notation: Use the capital letter $X$.
- Examples: $X=$ number of tails from flipping a coin 4 times
- Discrete random variables: values can only be countable numbers (positive integers); typically result from counting something.
- Examples: number of students in a grade; number of red marbles in a bag
- Continuous random variables: values can be any real number; typically result from measuring something.
- Examples: heights of students in a grade; distance between home and a grocery store
- Probability distribution: a table or graph that lists the probability of each outcome


## Example 1: Heads or Tails

Let $X$ be the number of heads showing. Create a probability distribution table and graph. Then determine $P(1 \leq X \leq 3)$ and explain its meaning.

| $X$ | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $P(X)$ | $\frac{1}{8}$ | $\frac{3}{8}$ | $\frac{3}{8}$ | $\frac{1}{8}$ |

$$
\begin{aligned}
P(1 \leq X \leq 3) & =P(X=1 \text { or } X=2 \text { or } X=3) \\
& =P(X=1)+P(X=2)+P(X=3)
\end{aligned}
$$

$$
=\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=\frac{7}{8} \Rightarrow 87.5 \% \text { of the time, we should see at least } 1 \text { head with } 3 \text { coin flips. }
$$

## Take Note

- Each probability, $P(X)$, must be between 0 and 1, inclusive: $0 \leq P(X) \leq 1$.
- The sum of all the possible probabilities is $1: \sum P\left(x_{i}\right)=1$.


## Definitions

- Mean (expected value): $\mu_{X}=E(X)=\sum x_{i} \cdot P\left(x_{i}\right)$; is not an ordinary average; it is a weighted average.
- Standard deviation: $\sigma_{X}=\sqrt{\sum\left(x_{i}-\mu_{X}\right)^{2} p_{i}}$


## Example 2: Drawing Cards

There is a deck of four cards: an ace, 2 , and 3 of hearts, and an ace of spades. One card is randomly drawn, replaced, and a second card is drawn. Let $X$ be the sum of the two drawn cards, where the ace has a value of 1 . Create a probability distribution table and graph. Then calculate the expected value and standard deviation.

| Sample <br> Space | $X$ |
| :---: | :---: |
| $A O, A O$ | 2 |
| $A O, 20$ | 3 |
| $A O, 30$ | 4 |
| $A O, A Q$ | 2 |
| $20, A O$ | 3 |
| 20,20 | 4 |
| 20,30 | 5 |
| $20, A Q$ | 3 |


| Sample <br> Space | $X$ |
| :---: | :---: |
| $30, A Q$ | 4 |
| 30,20 | 5 |
| 30,30 | 6 |
| $30, A Q$ | 4 |
| $A Q, A O$ | 2 |
| $A Q, 20$ | 3 |
| $A Q, 30$ | 4 |
| $A Q, A Q$ | 2 |


| $X$ | $P(X)$ |
| :---: | :---: |
| 2 | $\frac{1}{4}$ |
| 3 | $\frac{1}{4}$ |
| 4 | $\frac{5}{16}$ |
| 5 | $\frac{1}{8}$ |
| 6 | $\frac{1}{16}$ |

$\mu_{X}=3.5$
$\sigma_{X}=1.173$
The sum of two randomly selected cards will typically vary from the mean (3.5) by 1.173 units.

