BENEFITS OF RANDOM DISCRETE VARIABLES (MODEL NOTES)

Definitions

- <u>Random variables</u>: a numerical representation of an outcome from a random experiment
 - **Notation:** Use the capital letter *X*.
 - **Examples:** *X* = number of tails from flipping a coin 4 times
 - **Discrete random variables:** values can only be countable numbers (positive integers); typically result from counting something.
 - Examples: number of students in a grade; number of red marbles in a bag
 - **Continuous random variables:** values can be any real number; typically result from measuring something.
 - Examples: heights of students in a grade; distance between home and a grocery store
- Probability distribution: a table or graph that lists the probability of each outcome

Example 1: Heads or Tails

Let X be the number of heads showing. Create a probability distribution table and graph. Then determine $P(1 \le X \le 3)$ and explain its meaning.

$$P(1 \le X \le 3) = P(X = 1 \text{ or } X = 2 \text{ or } X = 3)$$

$$= P(X = 1) + P(X = 2) + P(X = 3)$$

 $=\frac{3}{8}+\frac{3}{8}+\frac{1}{8}=\frac{7}{8}$ \Rightarrow 87.5% of the time, we should see at least 1 head with 3 coin flips.

Take Note

- Each probability, P(X), must be between 0 and 1, inclusive: $0 \le P(X) \le 1$.
- The sum of all the possible probabilities is 1: $\sum P(x_i) = 1$.

RISK AND REWARD

Definitions

- Mean (expected value): $\mu_X = E(X) = \sum x_i \cdot P(x_i)$; is not an ordinary average; it is a weighted average.
- <u>Standard deviation</u>: $\sigma_x = \sqrt{\sum (x_i \mu_x)^2 p_i}$

Example 2: Drawing Cards

There is a deck of four cards: an ace, 2, and 3 of hearts, and an ace of spades. One card is randomly drawn, replaced, and a second card is drawn. Let *X* be the sum of the two drawn cards, where the ace has a value of 1. Create a probability distribution table and graph. Then calculate the expected value and standard deviation.

Sample Space	X	Sample Space	X
A♡, A♡	2	3♡, A♡	4
A♡, 2♡	3	3♡, 2♡	5
A♡, 3♡	4	30, 30	6
А♡, АФ	2	3♡, A⊉	4
2♡, A♡	3	A♀, A♡	2
2♡, 2♡	4	A♀, 2♡	3
2♡, 3♡	5	A♀, 3♡	4
2♡, Aû	3	ል ଦ୍ରି, ል ଦ୍ରି	2

X	P(X)
2	$\frac{1}{4}$
3	$\frac{1}{4}$
4	$\frac{5}{16}$
5	$\frac{1}{8}$
6	$\frac{1}{16}$

 $\mu_{x} = 3.5$

 $\sigma_{x} = 1.173$

The sum of two randomly selected cards will typically vary from the mean (3.5) by 1.173 units.

RISK AND REWARD

