IS IT A TRIANGLE? – SAMPLE RESPONSE

With your partner, use the provided GeoGebra activity to complete the table below. If a set of sides do not make a triangle, write "not a triangle" in the third column.

GeoGebra link: https://www.geogebra.org/m/tgwg6tnj.

Number Sets	Is It a Triangle? (Yes/No)	What Type of Triangle? (Acute, Obtuse, Right)	a+b	> < =	с
3, 4, 5	Yes	Right	7	>	5
1, 2, 3	No	Not a Triangle	3	=	3
6, 5, 10	Yes	Obtuse	11	>	10
12, 16, 18	Yes	Acute	28	>	18
7, 3, 12	No	Not a Triangle	10	<	12

How do we know if three line segments make a triangle?

When constructing a triangle, all three sides must meet the other at their endpoints. There cannot be any overlap or gaps.

What algebra can help us calculate this?

** * **	
Notation	a + b > c
1101411011	

How do we know what type of triangle a set of segments creates?

When constructing a triangle, you can use a protractor to determine the type of triangle you have.

What algebra can help us calculate this?

Type of Triangle	Notation
Right	$a^2 + b^2 = c^2$
Acute	$a^2 + b^2 > c^2$
Obtuse	$a^2 + b^2 < c^2$

IS IT A TRIANGLE? (TEACHER GUIDE)

Example Solutions for Lesson Slides

Slide 19: 5, 12, 13

Slide 23: 3, 3, 4

Step 1: Ask yourself: Is it a triangle?

$$a + b > c$$

5 + 12 > 13

This statement is true, therefore it's a triangle.

Step 2: Classify the triangle.

$$a^2 + b^2 \square c^2$$

(Which symbol goes in the box? =, <, >)

$$5^2 + 12^2 \square 13^2$$

$$25 + 144 \square 169$$

$$169 = 169$$

Because the two sides of the expression equal each other, it is a right triangle.

Step 1: Ask yourself: Is it a triangle?

$$a+b>c$$
$$3+3>4$$

This statement is true, therefore it's a triangle.

Step 2: Classify the triangle.

$$a^2 + b^2 \square c^2$$

(Which symbol goes in the box? =, <, >)

$$3^2 + 3^2 \square 4^2$$

Because the left side is larger than the right, it is an acute triangle.

Slide 27: 3, 4, 7

Step 1: Ask yourself: Is it a triangle?

$$a + b > c$$

3 + 4 > 7

This statement is true, therefore it's a triangle.

Step 2: Classify the triangle.

$$a^2 + b^2 \square c^2$$

(Which symbol goes in the box? =, <, >)

$$3^2 + 4^2 \square 7^2$$

$$9 + 16 \square 49$$

Because the left side is less than the right, it is an obtuse triangle.