IS IT A TRIANGLE? - SAMPLE RESPONSE

With your partner, use the provided GeoGebra activity to complete the table below. If a set of sides do not make a triangle, write "not a triangle" in the third column.
GeoGebra link: https://www.geogebra.org/m/tgwg6tnj.

Number Sets	Is It a Triangle? (Yes/No)	What Type of Triangle? (Acute, Obtuse, Right)	$a+b$	$<$	c
$3,4,5$	Yes	Right	7	$>$	5
$1,2,3$	No	Not a Triangle	3	$=$	3
$6,5,10$	Yes	Obtuse	Acute	11	$>$
$12,16,18$	Yes	No	Not a Triangle	10	$<$
$7,3,12$			28	$>$	18

How do we know if three line segments make a triangle?
When constructing a triangle, all three sides must meet the other at their endpoints. There cannot be any overlap or gaps.

What algebra can help us calculate this?

Notation

$$
a+b>c
$$

How do we know what type of triangle a set of segments creates?
When constructing a triangle, you can use a protractor to determine the type of triangle you have.
What algebra can help us calculate this?

Type of Triangle	Notation
Right	$a^{2}+b^{2}=c^{2}$
Acute	$a^{2}+b^{2}>c^{2}$
Obtuse	$a^{2}+b^{2}<c^{2}$

IS IT A TRIANGLE? (TEACHER GUIDE)

Example Solutions for Lesson Slides

Step 1: Ask yourself: Is it a triangle? $\begin{aligned} & a+b>c \\ & 5+12>13 \end{aligned}$ This statement is true, therefore it's a triangle.	Step 1: Ask yourself: Is it a triangle? $\begin{aligned} & a+b>c \\ & 3+3>4 \end{aligned}$ This statement is true, therefore it's a triangle.
Step 2: Classify the triangle. $a^{2}+b^{2} \square c^{2}$ (Which symbol goes in the box? $=,\langle,>$) $\begin{aligned} & 5^{2}+12^{2} \square 13^{2} \\ & 25+144 \square 169 \\ & 169=169 \end{aligned}$ Because the two sides of the expression equal each other, it is a right triangle.	Step 2: Classify the triangle. $a^{2}+b^{2} \square c^{2}$ (Which symbol goes in the box? $=,\langle$,$\rangle)$ $3^{2}+3^{2} \square 4^{2}$ $\begin{aligned} & 9+9 \square 16 \\ & 18>16 \end{aligned}$ Because the left side is larger than the right, it is an acute triangle.
Slide 27: 3, 4, 7 Step 1: Ask yourself: Is it a triangle? $\begin{aligned} & a+b>c \\ & 3+4>7 \end{aligned}$ This statement is true, therefore it's a triangle. Step 2: Classify the triangle. $a^{2}+b^{2} \square c^{2}$ (Which symbol goes in the box? $=,<,>$) $\begin{aligned} & \\ & 9+16 \square 49 \\ & 25<49 \end{aligned} \quad 3^{2}+4^{2} \square 7^{2}$ Because the left side is less than the right, it is an obtuse triangle.	

