GUIDED NOTES (MODEL NOTES)

Vocabulary

- transformation: a function (rule) that changes the figure in some way.
- translation: a type of transformation where every point of a figure is moved the same distance in the same direction; the figure slides without rotating or flipping.
- preimage: the original figure, before any transformation(s); the input.
- image: the final figure; the result from applying the transformation(s); the output.
- rigid motion: a transformation where the image is congruent to the preimage; a translation is an example of rigid motion.

- vector: a path, with a starting and ending point that a figure follows; it has size (magnitude/distance) and direction.
- example: $\overrightarrow{M N}$, read "vector $M N$, " where M is the starting (initial) point and N is the ending (terminal) point

We can also represent $\overrightarrow{M N}$ in its component
form: $\langle 4,-2\rangle$, where 4 is the horizontal component, and -2 is the vertical component.

Example Problems

1) Complete the table below for the unshaded preimage and shaded image.

2) Polygon $A B C D E$ has the following vertices: $A(1,-4), B(3,-5), C(5,-3)$,
$D(3,-3)$, and $E(1,1)$. Draw
Polygon $A B C D E$, then translate
Polygon $A B C D E$ using the vector $\langle-5,2\rangle$.
Label Polygon $A B C D E$ and its image.

3) What if the preimage was not on the coordinate plane? How would we construct the image? Construct the image given the following preimage and vector.

GUIDED NOTES (TEACHER GUIDE)

Example 3

How to construct a translation with a compass and straightedge.
Step 1: Use the compass to measure the length of
the vector.
Instruction
Step 3: Use the compass to measure the distance
between Point A and the initial end of the
vector. This measurement tells us about the
distance between Point A^{\prime} and the terminal end
of the vector.
Instruction

