TRANSLATIONS: GUIDED NOTES

Vocabulary

- \qquad : a function (rule) that changes the figure in some way.
- \qquad : a type of transformation where every point of a figure is moved the same distance in the same direction; the figure slides without rotating or flipping.
- \qquad : the original figure, before any transformation(s); the input.
\qquad : the final figure; the result from applying the transformation(s); the output.
- \qquad : a transformation where the image is congruent to the preimage; a translation is an example of rigid motion.

Verbal Description
Translate the preimage 4 units right and 2 units down.

Algebraic Rule

$(x, y) \rightarrow(x+4, y-2)$

Mapping Notation

$$
A \rightarrow A^{\prime}
$$

Read: Point A maps to point A prime.

Polygon $A B C D \rightarrow$ Polygon $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$
Read: Polygon A, B, C, D maps to polygon A prime, B prime, C prime, D prime.
\qquad : a path, with a starting and ending point that a figure follows; it has size (magnitude/distance) and direction.

- example: $\overrightarrow{M N}$, read "vector $M N$," where M is the starting (initial) point and N is the ending (terminal) point.

We can also represent $\overrightarrow{M N}$ in its component form: $\langle 4,-2\rangle$, where 4 is the horizontal component, and -2 is the vertical component.

Example Problems

1) Complete the table below for the unshaded preimage and shaded image.

2) Polygon $A B C D E$ has the following vertices: $A(1,-4), B(3,-5), C(5,-3), D(3,-3)$, and $E(1,1)$. Draw Polygon $A B C D E$; then translate Polygon $A B C D E$ using the vector $\langle-5,2\rangle$. Label Polygon $A B C D E$ and its image.

3) What if the preimage was not on the coordinate plane? How would we construct the image? Construct the image given the following preimage and vector.

