ROTATIONS: GUIDED NOTES

Vocabulary

\qquad : a type of transformation where a preimage is spun by a certain angle measure around a fixed point that is the center of rotation.

- \qquad : the number of degrees by which the preimage is rotated.

- Clockwise (CW): the direction in which the hands on a clock move

- counterclockwise (CCW): the opposite direction in which the hands on a clock move

Assume rotations to be counterclockwise unless stated otherwise.
Is a rotation an example of rigid motion? Write your answer below.

Special Rotations: Algebraic Rules

Fill in the blanks below.

Rotate about the origin ...	Algebraic Rule
$\ldots 90^{\circ} \mathrm{CCW}$	$(a, b) \rightarrow$
$\ldots \mathbf{1 8 0 ^ { \circ } \mathrm { CCW }}$	$(a, b) \rightarrow$
$\ldots \mathbf{2 7 0 ^ { \circ }} \mathbf{\mathrm { CCW }}$	$(a, b) \rightarrow$

- Rotating a figure $90^{\circ} \mathrm{CCW}$ is the same as rotating that figure \qquad CW.
- Rotating a figure 180° CCW is the same as rotating that figure \qquad CW.
- Rotating a figure $90^{\circ} \mathrm{CW}$ is the same as rotating that figure \qquad CCW.

Applying Algebraic Rules

1) On the table below, draw the rotated image on the graph based on the provided preimage. Then, write a verbal description of the transformation.

Other Rotations

2) What if we rotate a figure around a point that is not the origin? Rotate the following preimage 270° about the point $R(1,2)$.

3) How should we transform a preimage that is not on a coordinate plane? Rotate the primage below 120° about the given center of rotation, R. Draw the rotated image and mark its vertices.
\bullet

