DILATION EXIT TICKET

Consider the transformation of the standard (x, y) coordinate plane that maps each point (x, y) to the image (kx, ky) for a certain positive constant, k . This transformation maps $(4, 16)$ to $(1, 4)$. To what image does this transformation map (-12, 4)?	Consider the transformation of the standard (x, y) coordinate plane that maps each point (x, y) to the image (kx, ky) for a certain positive constant, k . This transformation maps $(4, 16)$ to $(1, 4)$. To what image does this transformation map $(-12, 4)$?
Consider the transformation of the standard (x, y) coordinate plane that maps each point (x, y) to the image (kx, ky) for a certain positive constant, k . This transformation maps $(4, 16)$ to $(1, 4)$. To what image does this transformation map (-12, 4)?	Consider the transformation of the standard (x, y) coordinate plane that maps each point (x, y) to the image (kx, ky) for a certain positive constant, k . This transformation maps $(4, 16)$ to $(1, 4)$. To what image does this transformation map $(-12, 4)$?

