DILATION EXIT TICKET

Consider the transformation of the standard (x, y) coordinate plane that maps each point (x, y) to the image $(k x, k y)$ for a certain positive constant, k. This transformation maps $(4,16)$ to $(1,4)$. To what image does this transformation map $(-12,4)$?	Consider the transformation of the standard (x, y) coordinate plane that maps each point (x, y) to the image $(k x, k y)$ for a certain positive constant, k. This transformation maps $(4,16)$ to $(1,4)$. To what image does this transformation map $(-12,4)$?
Consider the transformation of the standard (x, y) coordinate plane that maps each point (x, y) to the image $(k x, k y)$ for a certain positive constant, k. This transformation maps $(4,16)$ to $(1,4)$. To what image does this transformation map $(-12,4)$?	Consider the transformation of the standard (x, y) coordinate plane that maps each point (x, y) to the image $(k x, k y)$ for a certain positive constant, k. This transformation maps $(4,16)$ to $(1,4)$. To what image does this transformation map $(-12,4)$?

