EXPLORING TRANSFORMATIONS

Go to www.geogebra.org/m/ecyvtdfg to complete the GeoGebra activity.
Part A: $k>1$
Enter a k-value that is greater than 1. Move point Z and complete the table below.

Location of point Z (relative to preimage)	Location of Image (relative to preimage)	What do you think point Z does?
Left		
Right		
Above		
Below		

Part A: $0<\boldsymbol{k}<\mathbf{1}$
Enter a k-value that is between 0 and 1 . Move point Z and complete the table below.

Location of point Z (relative to preimage)	Location of Image (relative to preimage)	What do you think point Z does?
Left		
Right		
Above		
Below		

What happened when point Z was close to the preimage compared to when point Z was further from the preimage?

What does k seem to do?

Part B:

Now follow the directions for the Part B GeoGebra applet. Did this change or confirm your thoughts about point Z or k ? How so?

Part C

Use the GeoGebra applet to draw a line through each corresponding pairs of vertices (one line per pair). What do you notice?

Now complete the table below.

Length	Length	Ratio of Lengths
$A B=$	$A^{\prime} B^{\prime}=$	$\frac{A^{\prime} B^{\prime}}{A B}=$
$B C=$	$B^{\prime} C^{\prime}=$	$\frac{B^{\prime} C^{\prime}}{B C}=$
$C A=$	$C^{\prime} A^{\prime}=$	$\frac{C^{\prime} A^{\prime}}{C A}=$

Part D

Complete the table below.

Length	Length	Ratio of Lengths
$Z A=$	$Z A^{\prime}=$	$\frac{Z A^{\prime}}{Z A}=$
$Z B=$	$Z B^{\prime}=$	$\frac{Z B^{\prime}}{Z B}=$
$Z C=$	$Z C^{\prime}=$	$\frac{Z C^{\prime}}{Z C}=$

What do you notice?

