GUIDED NOTES (MODEL NOTES)

Vocabulary

- Dilation: a type of transformation where a preimage is resized with respect to a fixed point and a certain ratio; the preimage is enlarged or reduced by a scale factor, k
- Scale Factor: k; the ratio of corresponding side lengths of the preimage to image
- Center of Dilation: the fixed (unchanging) point, which is the origin unless stated otherwise, that the image dilates from

Is a dilation an example of rigid motion?
No, because the preimage and image are similar, not congruent
Scale Factors (k-Values):

| $\mathbf{k}>1$ |
| :--- | :--- | :--- | :--- |

Algebraic

- When the center of the dilation is at the origin, then the algebraic rule is

$$
(a, b) \rightarrow(k \cdot a, k \cdot b)
$$

- If $($ image $)=k \cdot($ preimage $)$, then the scale factor: $k=\frac{\text { image }}{\text { preimage }}$.

Applying Algebraic Rules

1) Draw the image and complete the table below for the unshaded preimage.

| Graph | Verbal Description | Algebraic Rule |
| :---: | :---: | :---: | :---: |
| | The image is a dilation
 centered at the origin
 with a scale factor of $\frac{1}{2}$. | $(x, y) \rightarrow\left(\frac{1}{2} x, \frac{1}{2} y\right)$ |

Other Centers of Dilation

2) What if we dilate a figure with respect to a point other than the origin? Dilate the following preimage with a center of dilation at point $Z(-1,1)$ and a scale factor of 2.5.

3) What if the preimage was not on the coordinate plane? How would we construct the image? Construct the image given the following preimage and the given center of dilation, Z, dilating it using $k=3$.

GUIDED NOTES (TEACHER GUIDE)

Example 3

How to construct a dilation with a compass and straightedge.
Step 1: Use the straightedge to draw a ray from
the center of dilation, Point Z, through
Point A.
Step 2: Use the compass to measure the
distance from Point Z to Point A

