PUT IT ALL TOGETHER

We have now explored transformations on many parent functions: polynomial, radical, exponential, and logarithmic functions. You have made observations about the general rules for transformations during these explorations. Now it is time to put them all together.

Function Notation

In general, a function is referred to as f(x). We can use this notation to represent any function—in fact, it is called **function notation**. If we are going to make generalizations about functions, we can do it using f(x).

Observation I

We have looked at:

$$y = (x-3)^2$$
 $y = \sqrt{x+1}$
 $y = e^{x-1}$
 $y = (x-3)^3$
 $y = \sqrt[3]{x+3}$
 $y = \ln(x+4)$

These are all examples of altering the x portion of the function. We could write this generally as f(x+a) where a is how we are changing x.

What effect did this change have on the parent function in each case?

Observation II

Also, we looked at:
$$y = x^2 + 3$$
 $y = \sqrt{x} - 2$ $y = e^x - 1$
 $y = x^3 + 3$ $y = \sqrt[3]{x} - 2$ $y = \ln(x) + 4$

What was changing here?

How might you write that in *function notation*?

What effect did this change have on the parent function in each case?

TRANSFORMERS, PART 2

Observation III

We also examined: $y = 2x^2$ $y = 2x^3$ $y = 3e^x$ What was changing here?

How might you write that in *function notation*?

What effect did this change have on the parent function in each case?

Observation IV

Also, we examined: $y = \sqrt{6x}$ $y = \sqrt[3]{8x}$ $y = \ln(3x)$ What was changing here? How did these differ from Observation III?

How might you write that in *function notation*?

What effect did this change have on the parent function in each case?

Prediction

How would the graph of $y = 3\sin(x+4) - 2$ differ from the parent graph of $f(x) = \sin(x)$?

