PUT IT ALL TOGETHER

We have now explored transformations on many parent functions: polynomial, radical, exponential, and logarithmic functions. You have made observations about the general rules for transformations during these explorations. Now it is time to put them all together.

Function Notation

In general, a function is referred to as $f(x)$. We can use this notation to represent any
function-in fact, it is called function notation. If we are going to make generalizations about functions, we can do it using $f(x)$.

Observation I

$$
\text { We have looked at: } \quad \begin{array}{llc}
y=(x-3)^{2} & y=\sqrt{x+1} & y=e^{x-1} \\
& y=(x-3)^{3} & y=\sqrt[3]{x+3}
\end{array}
$$

These are all examples of altering the x portion of the function. We could write this generally as $f(x+a)$ where a is how we are changing x.

What effect did this change have on the parent function in each case?

Observation II

Also, we looked at:

$$
y=x^{2}+3
$$

$$
y=\sqrt{x}-2
$$

$$
y=e^{x}-1
$$

$$
y=x^{3}+3
$$

$$
y=\sqrt[3]{x}-2
$$

$$
y=\ln (x)+4
$$

What was changing here?

How might you write that in function notation?

What effect did this change have on the parent function in each case?

Observation III

We also examined:

$$
y=2 x^{2}
$$

$$
y=2 x^{3}
$$

$$
y=3 e^{x}
$$

What was changing here?

How might you write that in function notation?

What effect did this change have on the parent function in each case?

Observation IV

Also, we examined:

$$
y=\sqrt{6 x}
$$

$$
y=\sqrt[3]{8 x}
$$

$$
y=\ln (3 x)
$$

What was changing here? How did these differ from Observation III?

How might you write that in function notation?

What effect did this change have on the parent function in each case?

Prediction

How would the graph of $y=3 \sin (x+4)-2$ differ from the parent graph of $f(x)=\sin (x)$?

