PROOF # 1

Prove: \triangle ABC $\stackrel{\sim}{=}$ \triangle DCB

Given

$$\swarrow$$
 ACB $\stackrel{\sim}{=}$ \swarrow DBC

If 2 lines are II, then alt int χ 's are $\stackrel{\sim}{=}$

Given

$$\swarrow$$
 ABC $\stackrel{\sim}{=}$ \swarrow DCB

If 2 lines are II, then alt int ∠'s are ≅

$$\overline{BC} = \overline{BC}$$

Reflexive

$$\triangle$$
 ABC $\stackrel{\sim}{=}$ \triangle DCB

ASA

PROOF # 2

Prove: \triangle ABD $\stackrel{\sim}{=}$ \triangle EBC

$$\swarrow A \stackrel{\cong}{=} \swarrow E$$

Given

AE bisects DC at B

Given

Definition of Segment Bisector

Vertical Angles are ≅

AAS

PROOF#3

Prove: △XCB ≅ △YCE

C is the midpoint of \overline{XY} C is the midpoint of \overline{BE}

Given

 $\overline{XC} \cong \overline{YC}$ and $\overline{BC} \cong \overline{EC}$

Definition of Midpoint

∡ XCB ≅ ∡ YCE

Vertical angles are \cong

△ XCB ≅ △ YCE

SAS

PROOF#4

Prove: △ BEF ≅ △ CEF

EF bisects BC at E

Given

Definition of Segment Bisector

$$\overline{\mathsf{BF}} \cong \overline{\mathsf{CF}}$$

Given

Reflexive

SSS

PROOF # 5

Prove: △ ABC ≅ △ EDC

C is the midpoint of \overline{AE}

Given

$$\overrightarrow{AC} \stackrel{\sim}{=} \overrightarrow{EC}$$

Definition of Midpoint

C is the midpoint of \overline{BD}

Given

$$\overline{BC} \cong \overline{DC}$$

Definition of Midpoint

 \swarrow B and \swarrow D are right \swarrow 's

Given

All right angles are $\stackrel{\sim}{=}$

$$\triangle$$
 ABC $\stackrel{\sim}{=}$ \triangle EDC

HL