FINDING THE GRAVITATIONAL CONSTANT

1) Use the "I Notice / I Wonder" table as you watch the two videos to reflect on how Henry Cavendish applied Newton's Law of Gravitation to measure the gravitational constant using a torsional balance in 1798.

Video 1: https://www.youtube.com/watch?v=4wt0135G8kM&t=38s

Video 2: https://www.fourmilab.ch/gravitation/foobar/videos/foobar1.webm

<u>l Notice</u>	<u>l Wonder</u>

2) Use the data table and Newton's Universal Law of Gravity to decide what should be graphed on the x and y axis to make a linear graph and show how the slope of that graph can be used to help you calculate the Gravitational constant, G.

$$F_g = \frac{Gm_1m_2}{r^2}$$

M _{Person} (kg)	50	50	50	50	50
M _{Earth} (kg)	5.97 x 10 ²⁴				
r _{Person to Earth} (m)	6.38 x 10 ⁶	1.29 x 10 ⁷	1.92 x 10 ⁷	2.50 x 10 ⁷	3.21 x 10 ⁷
Fg Person (N)	489	124	52.3	32.1	19.4
x:					
y:					

3) Notes from pairing up with another person to discuss the combined answer to the same question.

Name _____

4) Notes from class discussion over the same question.

5) With a partner, follow the steps described above to create a graph and use its slope to calculate the gravitational constant.

- a) Complete the table above with what will be on the x and y axis.
- b) Clearly label the variable and unit for each axis on the graph.
- c) Include a clearly marked scale for each axis and clearly mark the plotted points.
- d) Draw a best fit line for the graph.
- e) Show the work to calculate the slope of the graph.
- f) Using the slope show the steps to find the gravitational constant.
- g) Find the percent error of the calculated value of gravitational constant, if the actual

value of the gravitational constant, G, is $6.67 \times 10^{-11} \text{ Nm}^2 / \text{kg}^2$.

Percent Error = $\frac{[Actual - Predicted]}{Actual} \times 100$

