STOICHIOMETRY: MOLE TO MOLE NOTES

Vocabulary:

Stoichiometry- Greek, "stoiechion" (element) and "metron" (to measure). The calculation of the amount of substances in a chemical reaction from the balanced equation.

Balance the equation and then label the reactants, products, and coefficients in the following chemical equation:

Conversion factor- a numeric ratio of equal measurements used to convert quantities between different units.

Moles (mol)- the quantity of an element or compound containing 6.02×10^{23} (Avagadro's number) particles (ex. atoms, ions, etc.) of that element/compound.

Molar (Molecular) Mass- the weight (in grams) of a single mole of particles (atoms, ions, or molecules) of an element/compound.

Steps:

1. Balance the equation
2. Determine the mole to mole ratio between A and B
3. Multiply across, Divide Bottom

General Form for mole to mole conversions:

$\#$ mol A	Ratio from coefficient mol B
	Ratio from coefficient mol A

ketzbook's Stoichiometry Tricks Video:

Nitrogen reacts with Hydrogen to produce a component of fertilizer called ammonia (NH_{3}). How many moles of Nitrogen (N_{2}) do you need to make 10 moles of ammonia $\left(\mathrm{NH}_{3}\right)$?

1. Balance the equation:
$1 \mathrm{~N}_{2}+3 \mathrm{H}_{2}->2 \mathrm{NH}_{3}$
2. Determine the mole-to-mole ratio: 1:3:2
3. 10 moles NH_{3} require 1 mole N_{2}
4. Using the given information to solve the problem:

| $10 \mathrm{~mol} \mathrm{NH}_{3}$ | $1 \mathrm{~N}_{2}$ |
| :--- | :--- |$=5 \mathrm{~mol} \mathrm{~N}$

