STOICHIOMETRY: MOLE TO MOLE NOTES

Vocabulary:

Stoichiometry- Greek, "stoiechion" (element) and "metron" (to measure). The calculation of the amount of substances in a chemical reaction from the balanced equation.

Balance the equation and then label the reactants, products, and coefficients in the following chemical equation:

Conversion factor- a numeric ratio of equal measurements used to convert quantities between different units.

Moles (mol)- the quantity of an element or compound containing 6.02 x 10²³ (Avagadro's number) particles (ex. atoms, ions, etc.) of that element/compound.

Molar (Molecular) Mass- the weight (in grams) of a single mole of particles (atoms, ions, or molecules) of an element/compound.

Steps:

- **1**. Balance the equation
- 2. Determine the mole to mole ratio between A and B
- 3. Multiply across, Divide Bottom

ī

General Form for mole to mole conversions:

# mol A	Ratio from coefficient mol B	- malac of P
	Ratio from coefficient mol A	– moles of b

ketzbook's Stoichiometry Tricks Video:

Nitrogen reacts with Hydrogen to produce a component of fertilizer called ammonia (NH_3) . How many moles of Nitrogen (N_2) do you need to make 10 moles of ammonia (NH_3) ?

1. Balance the equation:

1 N₂ + 3 H₂ -> 2 NH₃

- 2. Determine the mole-to-mole ratio: 1:3:2
- 3. 10 moles NH₃ require 1 mole N₂
- 4. Using the given information to solve the problem:

10 mol NH ₃	1 N ₂	- E mol No
	2 mol NH3	$= 5 \text{ mor } N_2$

