STOICHIOMETRY: MOLES TO MOLES NOTES

Vocabulary:

Fill in the blank:
Stoichiometry- Greek, "stoiechion" (\qquad) and "metron" (to \qquad). The calculation of the amount of substances in a chemical reaction from the balanced equation.

Balance the equation and then label the reactants, products, and coefficients in the following chemical equation:

Conversion factor- a
numeric \qquad
of equal measurements used to convert quantities between different \qquad .

Moles- the \qquad of an element or compound containing (Avagadro's number) particles (ex. atoms, ions, etc.) of that element/compound.
Molar(Molecular) Mass- the \qquad (in \qquad) of a single mole of particles (atoms, ions, or molecules) of an element/compound.

Steps:

1. \qquad the equation
2. Determine the \qquad to \qquad ratio between A and B
3. \qquad across, \qquad bottom

General Form for mole to mole conversions:

ketzbook's Stoichiometry Tricks Video:

Nitrogen reacts with Hydrogen to produce a component of fertilizer called ammonia, NH_{3}. How many moles of Nitrogen, N_{2}, do you need to make 10 moles of ammonia, NH_{3} ?

1. Balance the equation:
\qquad $\mathrm{N}_{2}+$ \qquad H_{2}-> \qquad NH_{3}
2. Determine the mole-to-mole ratio:
3. __ moles NH_{3} require \qquad moles N_{2}
4. Using the given information to solve the problem:

