STOICHIOMETRY: GRAMS TO GRAMS NOTES

Vocabulary:

Stoichiometry- Greek,"stoiechion" meaning "element," and "metron" meaning "to measure." The process of calculating substance quantities in a reaction using the balanced equation.

Balanced Equation- An equation that upholds mass conservation and equal element counts on both sides of an equation.

Coefficient- a whole number put before a formula in a chemical equation to achieve equilibrium.

Conversion factor- a numeric ratio of equal measurements used to convert quantities between different units.

Moles(mol)- the quantity of an element or compound containing 6.02×10^{23} (Avagadro's number) particles (ex. atoms, ions, etc.) of that element/compound.

Molar (Molecular) Mass-the weight (in grams) of a single mole of particles (atoms, ions, or molecules) of an element/compound.

Steps:

1. \qquad the equation
2. Convert grams A given in the problem to \qquad by dividing by the
\qquad from the periodic table.
3. Determine the \qquad to \qquad ratio between A and B.
4. Convert moles of B to \qquad by multiplying the \qquad
\qquad of B.
5. \qquad across, \qquad bottom.

ketzbook's Stoichiometry Tricks Video:

Problem: How many grams of carbon dioxide are produced when 2800 grams of octane are burned in excess air?

1. Balance reaction:

2. Mass of $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{18}\right)$ given: \qquad
3. Molar Mass of $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{18}\right)$: \qquad
4. Mole to Mole Ratio of A and B \qquad
5. Molar Mass of $\mathrm{B}\left(\mathrm{CO}_{2}\right)$: \qquad
6. Use the given information to solve the problem:

7. Answer: \qquad

Practice Problem:

Problem: If 14 grams of H_{2} and excess O_{2} react to produce water. How many grams of $\mathrm{H}_{2} \mathrm{O}$ are produced?

1. Balance the equation:
\qquad $\mathrm{H}_{2}+$ \qquad O_{2}-> $\mathrm{H}_{2} \mathrm{O}$
2. Determine mass A : \qquad
3. Convert mass A into $1 \mathrm{~mol} A$: \qquad
4. Determine the mole-to-mole ratio:
5. 2 moles $\mathrm{C}_{4} \mathrm{H}_{10}$ require 26 moles O_{2}
6. Using the given information to solve the problem:

7. Answer: \qquad
Adapted from: Foundation, C.-12. (n.d.). 12 foundation. CK. https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/section/12.1/primary/lesson/everyday-stoichiometry-chem/
Foundation, C.-12. (n.d.-a). 12 foundation. CK. https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/section/10.4/primary/lesson/conversions-between-moles-and-mass-chem/
Foundation, C.-12. (n.d.-a). 12 foundation. CK. https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/section/10.2/primary/lesson/conversions-between-moles-and-atoms-chem/
