STOICHIOMETRY: GRAMS TO GRAMS NOTES

Vocabulary:

Stoichiometry- Greek,"stoiechion" meaning "element," and "metron" meaning "to measure." The process of calculating substance quantities in a reaction using the balanced equation.

Balanced Equation- An equation that upholds mass conservation and equal element counts on both sides of an equation.

Coefficient- a whole number put before a formula in a chemical equation to achieve equilibrium.

Conversion factor- a numeric ratio of equal measurements used to convert quantities between different units.

Moles(mol)- the quantity of an element or compound containing 6.02×10^{23} (Avagadro's number) particles (ex. atoms, ions, etc.) of that element/compound.

Molar (Molecular) Mass-the weight (in grams) of a single mole of particles (atoms, ions, or molecules) of an element/compound.

Steps:

1. Balance the equation.
2. Convert grams A given in the problem to moles of A by dividing by the molar(molecular) mass of A from the periodic table.
3. Determine the mole to mole ratio between A and B.
4. Convert moles of B to the mass of B by multiplying the molecular mass of B.
5. Multiply across, divide bottom.

\#g A	\#mol A	Ratio from coefficient mol B	Molar mass from periodic table g B
	Molar mass from periodic table g A	Ratio from coefficient mol A	

$$
=\text { grams of } B
$$

ketzbook's Stoichiometry Tricks Video:

Problem: How many grams of carbon dioxide are produced when 2800 grams of octane are burned in excess air?

1. Balance reaction:

$$
2 \mathrm{C}_{4} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}
$$

2. Mass of $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{18}\right)$ given: $2800 \mathrm{~g} \mathrm{C} \mathrm{C}_{4} \mathrm{H}_{18}$
3. Molar mass of $\mathrm{A}\left(\mathrm{C}_{4} \mathrm{H}_{18}\right)$: $114.2 \mathrm{~g} \mathrm{C} \mathrm{C}_{4} \mathrm{H}_{18}$
4. Mole to mole ratio of A and $B: 2 \mathrm{~mol}$ of A to 16 mol of $B(2: 16)$
5. Molar Mass of $\mathrm{B}\left(\mathrm{CO}_{2}\right): 44.01 \mathrm{~g}$
6. Use the given information to solve the problem:

$2800 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{18}$	$1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{18}$	$16 \mathrm{~mol} \mathrm{CO}_{2}$	44.01 g
	$114.2 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{18}$	$2 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{18}$	$1 \mathrm{~mol} \mathrm{CO}_{2}$

7. Answer: $8,632.43 \mathrm{~g} \mathrm{CO}_{2}$

Practice Problem:

Problem: If 14 grams of H_{2} and excess O_{2} react to produce water. How many grams of $\mathrm{H}_{2} \mathrm{O}$ are produced?

1. Balance the equation:

$$
2 \mathrm{H}_{2}+1 \mathrm{O}_{2}->2 \mathrm{H}_{2} \mathrm{O}
$$

2. Mass A given: $14 \mathrm{~g} \mathrm{H}_{2}$
3. Molar mass of A: $2.02 \mathrm{~g} \mathrm{H}_{2}$
4. Mole to mole ratio of A and $B: 2: 2$
5. Molar Mass of $\mathrm{B}\left(\mathrm{CO}_{2}\right): 18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
6. Using the given information to solve the problem:

14 g H 2	$1 \mathrm{~mol} \mathrm{H}_{2}$	$2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$	18.02 g H O
	$2.02 \mathrm{~g} \mathrm{H}_{2}$	$2 \mathrm{~mol} \mathrm{H}_{2}$	1 mol H O

7. Answer: $124.89 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
[^0]
[^0]: Adapted from: Foundation, C.-12. (n.d.). 12 foundation. CK. https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/section/12.1/primary/lesson/everyday-stoichiometry-chem/

 Foundation, C.-12. (n.d.-a). 12 foundation. CK. https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/section/10.4/primary/lesson/conversions-between-moles-and-mass-chem/

 Foundation, C.-12. (n.d.-a). 12 foundation. CK. https://flexbooks.ck12.org/cbook/ck-12-chemistry-flexbook-2.0/section/10.2/primary/lesson/conversions-between-moles-and-atoms-chem/

