EXIT TICKET

Suppose you're in a chemistry lab, and you want to synthesize water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ by reacting hydrogen gas $\left(\mathrm{H}_{2}\right)$ with oxygen gas $\left(\mathrm{O}_{2}\right)$ according to the following balanced chemical equation:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

You have 10.0 grams of hydrogen gas $\left(\mathrm{H}_{2}\right)$ and 40.0 grams of oxygen gas $\left(\mathrm{O}_{2}\right)$. After carrying out the reaction, you find that you obtain 16.0 grams of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Calculate the percent yield of the reaction.

EXIT TICKET

Suppose you're in a chemistry lab, and you want to synthesize water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ by reacting hydrogen gas $\left(\mathrm{H}_{2}\right)$ with oxygen gas $\left(\mathrm{O}_{2}\right)$ according to the following balanced chemical equation:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})->2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

You have $\mathbf{1 0 . 0}$ grams of hydrogen gas $\left(\mathrm{H}_{2}\right)$ and $\mathbf{4 0 . 0}$ grams of oxygen gas $\left(\mathrm{O}_{2}\right)$. After carrying out the reaction, you find that you obtain 16.0 grams of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. Calculate the percent yield of the reaction.

