POLYNOMIALS AND ALGEBRA TILES

Reference Key

$-1 \& 1$	$-x \& x$	$-x^{2} \& x^{2}$	$-x^{3} \& x^{3}$
\square			

Note: All red algebra tiles represent negative terms. A zero pair is a positive and negative pair.

Adding Polynomials
Build each polynomial separately. What is the most efficient way to summarize how many blocks of each kind you have all together?
$\left(3 x^{3}+2 x^{2}-x-3\right)$ and $\left(-x^{3}-5 x^{2}+5\right)$

Answer: \qquad

Reflect: Describe how you thought through the problem from start to finish. (Verbalize your thought process on working through the problem.)

POLYNOMIALS AND ALGEBRA TILES

Reference Key

$-1 \& 1$	$-x \& x$	$-x^{2} \& x^{2}$	$-x^{3} \& x^{3}$
\square	\square		

Note: All red algebra tiles represent negative terms. A zero pair is a positive and negative pair.

Subtracting Polynomials
Build ($5 x^{3}-3 x^{2}+2 x+6$) and take away $\left(-2 x^{3}+2 x^{2}-x+2\right)$. How many do you have left?

Answer: \qquad

Reflect: Describe how you thought through the problem from start to finish. (Verbalize your thought process on working through the problem.)

