FREE RESPONSE (SAMPLE RESPONSES)

This problem is intended to be solved without the use of a calculator.
Consider the curve defined by the equation $\frac{d y}{d x}=(y+1)^{2} \sin \left(\frac{\pi}{2} x\right)$.
(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(b) There is a horizontal line with equation $y=c$ that satisfies this differential equation. Find the value of c.
(c) Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(1)=0$.
(a)

$+2:\left\{\begin{array}{l}+1: \text { zero slopes } \\ +1: \text { all other slopes }\end{array}\right.$

$$
\begin{array}{lll}
(-1,1) \Rightarrow-4 & (0,1) \Rightarrow 0 & (1,1) \Rightarrow 4 \\
(-1,0) \Rightarrow-1 & (0,0) \Rightarrow 0 & (1,0) \Rightarrow 1 \\
(-1,-1) \Rightarrow 0 & (0,-1) \Rightarrow 0 & (1,-1) \Rightarrow 0
\end{array}
$$

(b) c quals -1 because the slope when $y=-1$ is constantly zero and the slope of $y=c$ would also be constantly zero.
(c) $\frac{d y}{d x}=(y+1)^{2} \sin \left(\frac{\pi}{2} x\right)$
$\int(y+1)^{-2} d y=\int \sin \left(\frac{\pi}{2} x\right) d x$
$-(y+1)^{-1}=-\frac{2}{\pi} \cos \left(\frac{\pi}{2} x\right)+c$
$\frac{-1}{y+1}=-\frac{2}{\pi} \cos \left(\frac{\pi}{2} x\right)+c$
$y+1=\frac{-1}{-\frac{2}{\pi} \cos \left(\frac{\pi}{2} x\right)+c}$
$y+1=\frac{\pi}{2 \cos \left(\frac{\pi}{2} x\right)+c}$
$(0)+1=\frac{\pi}{2 \cos \left(\frac{\pi}{2}(1)\right)+c}$
$1=\frac{\pi}{0+c}$
$c=\pi$
$y=\frac{\pi}{2 \cos \left(\frac{\pi}{2} x\right)+\pi}-1$
$+1: c=-1$

+1: separates variables
 +2: antiderivatives
 +6 : $\{+1$: constant of integration
 +1: uses initial condition
 +1: answer

Note: If missing constant of integration, maximum of $3 / 6$ points: 1-2-0-0-0.

Note: If no separation of variables, 0/6 points.

