GUIDED NOTES (SAMPLE RESPONSES)

Vocabulary

- differential equation: an equation that relates an unknown function, y, and its derivative(s)

$$
\underbrace{\frac{d y}{d x}}_{\text {slope }}=\underbrace{f(x, y)}_{\text {function in terms of } x^{\prime} \text { s and } y^{\prime} s}
$$

- lineal element: a short line segment drawn through (x, y) with slope $\frac{d y}{d x}$
- slope field (direction field): the graphical representation of a differential equation made up of a collection of lineal elements

Example Problems

1) Use the given slope field to find the general solution of the differential equation: $\frac{d y}{d x}=\cos x$.

$$
\begin{aligned}
& \left.\frac{d y}{d x}\right|_{x=0}=\cos (0)=1 \\
& \left.\frac{d y}{d x}\right|_{x=\frac{\pi}{2}}=\cos \left(\frac{\pi}{2}\right)=0 \\
& \left.\frac{d y}{d x}\right|_{x=\pi}=\cos (\pi)=-1 \\
& \left.\frac{d y}{d x}\right|_{x=\frac{3 \pi}{2}}=\cos \left(\frac{3 \pi}{2}\right)=0 \\
& \left.\frac{d y}{d x}\right|_{x=2 \pi}=\cos (2 \pi)=1
\end{aligned}
$$

general solution: $y=\sin x+c$
2) Plot the slope field for the differential equation: $\frac{d y}{d x}=x+y$. Sketch a reasonable solution using the initial condition: $(2,0)$.

$(-2,2) \Rightarrow 0$	$(-1,2) \Rightarrow 1$	$(0,2) \Rightarrow 2$	$(1,2) \Rightarrow 3$	$(2,2) \Rightarrow 4$
$(-2,1) \Rightarrow-1$	$(-1,1) \Rightarrow 0$	$(0,1) \Rightarrow 1$	$(1,1) \Rightarrow 2$	$(2,1) \Rightarrow 3$
$(-2,0) \Rightarrow-2$	$(-1,0) \Rightarrow-1$	$(0,0) \Rightarrow 0$	$(1,0) \Rightarrow 1$	$(2,0) \Rightarrow 2$
$(-2,-1) \Rightarrow-3$	$(-1,-1) \Rightarrow-2$	$(0,-1) \Rightarrow-1$	$(1,-1) \Rightarrow 0$	$(2,-1) \Rightarrow 1$
$(-2,-2) \Rightarrow-4$	$(-1,-2) \Rightarrow-3$	$(0,-2) \Rightarrow-2$	$(1,-2) \Rightarrow-1$	$(2,-2) \Rightarrow 0$

