LET'S MAKE A PROOF (SAMPLE RESPONSES)

Complete each two-column proof.

Proof 1

Given: $\overline{KM} \parallel \overline{LN}$ $\overline{KL} \parallel \overline{MN}$ Prove: $\Delta KLN \cong \Delta NMK$	
Statement	Reason
$\overline{KM} \parallel \overline{LN}$	Given
$\angle LNK \cong \angle MKN$	Alternate Interior Angles Theorem
$\overline{KL} \parallel \overline{MN}$	Given
$\angle LKN \cong \angle MNK$	Alternate Interior Angles Theorem
$\overline{KN} \cong \overline{NK}$	Reflexive Property of Congruence
$\Delta KLN \cong \Delta NMK$	ASA Congruence Theorem

Proof 2

Given: $\angle V \cong \angle Y$ \overline{VY} bisects \overline{WX} at Z Prove: $\triangle VWZ \cong \triangle YXZ$	V W W
Statement	Reason
$\angle V \cong \angle Y$	Given
\overline{VY} bisects \overline{WX} at Z	Given
$\overline{W}Z \cong \overline{XZ}$	Definition of Segment Bisector
$\angle WZV \cong \angle XZY$	Vertical Angles Congruence Theorem
$\Delta VWZ \cong \Delta YXZ$	AAS Congruence Theorem

Proof 3

Given: <i>M</i> is the midpoint of \overline{AD} <i>M</i> is the midpoint of \overline{BC} Prove: $\triangle ABM \cong \triangle DCM$	B D C
Statement	Reason
M is the midpoint of \overline{AD}	Given
$\overline{AM} \cong \overline{DM}$	Definition of Midpoint
M is the midpoint of \overline{BC}	Given
$\overline{BM} \cong \overline{CM}$	Definition of Midpoint
$\angle AMB \cong \angle DMC$	Vertical Angles Congruence Theorem
$\Delta ABM \cong \Delta DCM$	SAS Congruence Theorem

COUNTDOWN TO CONGRUENCE

Proof 4

Given: \overline{BX} bisects \overline{YZ} at B $\overline{XY} \cong \overline{XZ}$ Prove: $\Delta XBY \cong \Delta XBZ$	X B Z
Statement	Reason
\overline{BX} bisects \overline{YZ} at B	Given
$\overline{BY} \cong \overline{BZ}$	Definition of Segment Bisector
$\overline{XY} \cong \overline{XZ}$	Given
$\overline{XB} \cong \overline{XB}$	Reflexive Property of Congruence
$\Delta XBY \cong \Delta XBZ$	SSS Congruence Theorem

