LET'S MAKE A PROOF

Complete each two-column proof.

Given: $\overline{KM} \parallel \overline{LN}$ $\overline{KL} \parallel \overline{MN}$ Prove: $\Delta KLN \cong \Delta NMK$	
Statement	Reason
$\overline{KM} \parallel \overline{LN}$	
$\angle LNK \cong \angle MKN$	
$\overline{KL} \parallel \overline{MN}$	
$\angle LKN \cong \angle MNK$	
$\overline{KN} \cong \overline{NK}$	

Given: $\angle V \cong \angle Y$ \overline{VY} bisects \overline{WX} at Z Prove: $\triangle VWZ \cong \triangle YXZ$	V Z Y W
Statement	Reason
$\angle V \cong \angle Y$	
\overline{VY} bisects \overline{WX} at Z	
	Vertical Angles Congruence Theorem
$\Delta VWZ \cong \Delta YXZ$	

Given: <i>M</i> is the midpoint of \overline{AD} <i>M</i> is the midpoint of \overline{BC} Prove: $\triangle ABM \cong \triangle DCM$	B D C
Statement	Reason
M is the midpoint of \overline{AD}	
	Definition of Midpoint
$\Delta ABM \cong \Delta DCM$	

Given: \overline{BX} bisects \overline{YZ} at B $\overline{XY} \cong \overline{XZ}$ Prove: $\Delta XBY \cong \Delta XBZ$	X B Z
Statement	Reason

