GUIDED NOTES: BOUNCE WIGGLE CROSS

Directions:

1. Use the following window values:
i. $[x$ min, x max] $=[-3,4] \quad[y \min , y$ max $]=[-100,100] y s c l=0$
2. Graph each $f(x)$ on your calculator.
3. Sketch the graph on the chart. Do not worry about the scale. We are only interested in the end-behaviors and the behavior at the x-intercepts.
4. Fill in the remaining columns of the chart based on the information you see on your graph.

After completing the table:

1. Look at each root where the graph of $f(x)$ "crossed" the x-axis. What was the power of the corresponding factor?
2. Look at each root where the graph of $f(x)$ wiggled at the x-axis. What do you notice about the power of the corresponding factor?
3. Look at each root where the graph of the $f(x)$ is tangent or bounced at the x-axis. What do you notice about the power of the corresponding factor?
4. If $f(x)$ has the highest-powered term axn ${ }^{n}$, describe the end behavior of the $f(x)$ in each of the following situations:
$a>0, n$ is even: \qquad
$a<0, n$ is even: \qquad
$a>0, n$ is odd: \qquad
$a<0, n$ is odd: \qquad

EXTENSION: BOUNCE WIGGLE CROSS

Calculus Connection:

A particle starts at time $t=0$ and moves along the x-axis so that its position at any time $t \geq 0$ is given by:

$$
x(t)=(t-1)^{3}(2 t-3) .
$$

For what values of t is the velocity of the particle less than zero?
(Hint: factor the algebraic expression, then sketch a quick sketch using the x-intercepts and the behavior of the exponents to find where the function is <0.)

$$
V(t)=2(t-1)^{3}+3(t-1)^{2}(2 t-3)
$$

