GUIDED INQUIRY HANGING MASS LAB

Goal: Determine how the net force on a cart affects its acceleration.

Materials (per group)

- Physics cart
- Pulley + clamp
- String (non-stretchy)
- Hanging masses (suggested: 25 g, 50 g, 75 g, 100 g, 125 g)
- Stopwatch or photogate timer
- Meter stick / tape measure
- Balance (to measure masses)
- Tape (to mark start & finish lines)
- Safety goggles (recommended)

Setup

- 1. Put the cart on a smooth, level track or table.
- 2. Attach the string to the cart and run it over the pulley; hang the masses on the free end.
- 3. Mark a 1.00 m travel distance along the track (Start → Finish). Use the same start and finish for every run.
- 4. Measure the mass of the cart (in kg) and write it down. Record the mass of each hanging weight you use (in g and convert to kg for calculations).

Procedure

- 1. Choose a hanging mass (start with 25 g). Make sure the string is taut, and the hanging mass hangs freely.
- 2. Pull the cart back so it is at the Start line and release it from rest (no push).
- 3. Time the run. Start timing when the front of the cart passes the Start line and stop when it passes the Finish line. Record the time as Time 1.
- 4. Repeat two more times (Time 2, Time 3) with the same hanging mass.
- 5. Change to the next hanging mass and repeat steps 1-4 until you have data for five different hanging masses. (Suggested masses: 25, 50, 75, 100, 125 g.)

- 6. For each hanging mass compute average time, acceleration, and force. Fill the Summary table (below).
- 7. Graph Force (y-axis) vs Acceleration (x-axis) and draw a best-fit line. Use the graph to answer analysis questions.

Data Table 1

Trial	Hanging Mass (g)	Distance <i>d</i> (m)	Time 1 (s)	Time 2 (s)	Time 3 (s)	Average Time (s)
1		1.0				
2		1.0				
3		1.0				
4		1.0				
5		1.0				

Data Table 2: Summary for Graph and Calculations

Trial	Hanging Mass (g)	Hanging Mass m _{hang} (kg)	Cart Mass (kg)	Total mass m _{total} (kg)	Force F = m _{hang} g (N)	Acceleration a (m/s²)
1						
2						
3						
4						
5						

Graphing Instructions

- X-axis: Acceleration a (m/s²): use measured acceleration.
- Y-axis: Force F (N) = $m_{hang}g$.
- Plot all five points and draw a best-fit straight line.

Analysis Questions

- 1. What relationship between Force and Acceleration do you observe? Does your graph support F=ma? Explain.
- 2. How does increasing the hanging mass (force) change the acceleration? Give evidence from your data.
- 3. For a fixed hanging mass, how would adding mass to the cart change the acceleration? (Use data or the atheory equation to support your answer.)
- 4. Compare measured acceleration to predicted acceleration. What are possible reasons for any differences? (Consider friction, pulley friction, timing errors, human reaction time.)
- 5. Which source of uncertainty had the largest effect on your results? How could the lab be improved to reduce that uncertainty?