# **Periodic Shuffle**

## Introduction to Periodicity and Electron Configuration



K20 Center, Bj Sneed, Teresa Randall, Alexandra Parsons Published by *K20 Center* 

This work is licensed under a <u>Creative Commons CC BY-SA 4.0 License</u>

| Grade Level | 9th – 12th Grade            | Time Frame | 2-3 class period(s) |  |  |
|-------------|-----------------------------|------------|---------------------|--|--|
| Course      | Chemistry, Physical Science | Duration   | 135 minutes         |  |  |

### **Essential Question**

How do patterns allow for making predictions? How can the periodic table be used to make predictions about the properties of elements?

## Summary

In this lesson, students will learn how to predict electron configuration and valence electrons by exploring patterns within the periodic table. Students will discover that elements are arranged in increasing order of their atomic number in the periodic table, and then the elements repeat their properties after a definite interval. As a prerequisite to this lesson, students should be able to read electron configurations.

## Snapshot

### Engage

Students predict missing portions of a ROYGBIV visual table.

### Explore

Students investigate the electron configuration patterns of the periodic table.

### Explain

Students color in a periodic table to reflect the patterns they found.

### Extend

Students investigate the valence electrons patterns of the periodic table.

### Evaluate

Students write a Word Splash about what they have learned.

### Standards

ACT College and Career Readiness Standards - Science (6-12)

IOD202: Identify basic features of a table, graph, or diagram (e.g., units of measurement)

IOD302: Understand basic scientific terminology

**IOD304:** Determine how the values of variables change as the value of another variable changes in a simple data presentation

IOD403: Translate information into a table, graph, or diagram

**EMI201:** Find basic information in a model (conceptual)

EMI301: Identify implications in a model

EMI603: Use new information to make a prediction based on a model

Next Generation Science Standards (Grades 9, 10, 11, 12)

**HS-PS1-1:** Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.

Oklahoma Academic Standards (Physical Science)

**CH.PS1.1 :** Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.

Oklahoma Academic Standards (Physical Science)

**PS.PS2:** Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms.

**PS.PS1.1.1:** Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons.

**PS.PS1.1.2:** The periodic table orders elements horizontally by the number of protons in the atom's nucleus and places those with similar chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states.

### Attachments

- <u>Electron Configuration Cards—Periodic Shuffle Spanish.docx</u>
- <u>Electron Configuration Cards—Periodic Shuffle Spanish.pdf</u>
- Electron Configuration Cards—Periodic Shuffle.docx
- <u>Electron Configuration Cards—Periodic Shuffle.pdf</u>
- Explore—Periodic Shuffle Spanish.docx
- Explore—Periodic Shuffle Spanish.pdf
- Explore—Periodic Shuffle.docx
- Explore—Periodic Shuffle.pdf
- Lesson Slides—Periodic Shuffle.pptx
- <u>Periodic Table—Periodic Shuffle Spanish.docx</u>
- Periodic Table—Periodic Shuffle Spanish.pdf
- <u>Periodic Table—Periodic Shuffle.docx</u>
- Periodic Table—Periodic Shuffle.pdf
- <u>Valence Electrons—Periodic Shuffle Spanish.docx</u>
- <u>Valence Electrons—Periodic Shuffle Spanish.pdf</u>
- <u>Valence Electrons—Periodic Shuffle.docx</u>
- Valence Electrons—Periodic Shuffle.pdf

### Materials

- Lesson Slides (attached)
- Explore handout (attached; 1 per student)
- Electron Configuration Cards (attached; 1 card per group of three students)
- Valence Electrons handout (attached; 1 per student)

- Periodic Table handout (attached; 1 per student)
- Class periodic table (large enough that a sticky note should fit inside each square)
- Colored pencils or markers
- Sticky notes (1 stack per group of three students)

10 minutes

## Engage

Use the attached **Lesson Slides** to guide the instruction. Display **slide 2** and provide an introduction to the lesson. Point out the word "periodicity," and share the following definition with students: *Periodicity is the repetition of something after a certain interval*. Consider asking students if they can think of some things that occur at regular intervals. Possible responses might include a full moon occurring about every 29 days, a year occurring every 365 days, or a day occurring every 24 hours. In chemistry, periodicity refers to the recurring trends that are seen in the properties of elements.

#### **Teacher's Note**

Consider reviewing electron configuration if it has been some time since students have used that information.

Share the essential questions with students on **slide 3.** Go to **slide 4** and go over the learning objectives. Go to **slide 5**, and give students a few minutes to consider how they would fill in the missing parts of the grid and why. Have some students share what they are thinking and how they came to that conclusion.

### **Teacher's Note**

As students engage with the ROYGBIV table, they should begin constructing knowledge about how to identify and analyze patterns.

Go to **slide 6**. The correct answer is the image on the right. Point out the patterns.

The patterns in the ROYGBIV table are similar to the periodic table which will be explored throughout the lesson. The horizontal pattern in the ROYGBIV table is analogous to the electron configuration in the periodic table, while the vertical pattern is analogous to the valence electrons.

#### **Lesson Preparation**

Print out the attached **Electron Configuration Cards**. Cut out each card and prepare to distribute one card to each student group. Consider printing the cards on card stock or laminating them to reuse them for other classes.

Additionally, be sure to display a large periodic table in an easily accessible spot for students to interact with.

Go to **slide 7**. Put students into groups of about three, and pass out one of the attached **Explore** handouts to each student. Next, give each group one Electron Configuration Card and a pad of sticky notes.

#### **Teacher's Note**

If you have more than eight groups, make additional copies of the Electron Configuration Cards document, and assign the same cards to more than one group.

Have students work on the Explore handout, including having students putt sticky notes on the classroomsize periodic table.

© 2015 Todd Helmenstine

15 minutes

## Explain

Go to **slide 8**. Pass out one of the attached **Periodic Table** handouts to each student. Let students pick four colors of markers or colored pencils. Based on what they learned in the Explore activity, have the students color the s, p, d, and f blocks four unique colors in their handouts. Remind them to add a legend indicating which color represents which block.

| 1<br>IA<br>1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Periodic lable of the Elements                                                                                            |                                                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                                                                      |                                                                                          |                                                                                                 |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
| H<br>Hydrogen<br>IIA<br>2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S                                                                                                                         | p d                                                                                                                                                                                 | f                                                                                                                                           | Atomic<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Atomic<br>Mass                                                                                 |                                                                                                                                      | 13<br>IIIA<br>3A                                                                         | 14<br>IVA<br>4A                                                                                 | 15<br>VA<br>5A                                                                             | 16 17<br>VIA VIIA<br>6A 7A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 192                           |  |  |
| Lithium<br> HK 2h <sup>2</sup> Beryllium<br> HK 2h <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                           |                                                                                                                                                                                     |                                                                                                                                             | Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nbol<br>me                                                                                     |                                                                                                                                      | 5 B<br>Boron<br>(He(2) <sup>2</sup> 2p <sup>3</sup>                                      | Carbon<br>He(2s <sup>2</sup> 2p <sup>2</sup>                                                    | N<br>Nitrogen<br>Heitz <sup>2</sup> 2p <sup>3</sup>                                        | Oxygen<br>PHE(2x <sup>2</sup> 2p <sup>4</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |  |  |
| 11 22 000<br>Nagosium<br>INE55 <sup>1</sup> 12 24 305<br>Magnesium<br>INE55 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 4<br>IIIB IVB<br>3B 4B                                                                                                  | 5 6<br>VB VIB<br>5B 6B                                                                                                                                                              | 7<br>VIIB<br>7B                                                                                                                             | 8<br>VIII<br>8<br>VIII<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10                                                                                             | 11 12<br>IB IIB<br>1B 2B                                                                                                             | 13 20.992<br>Aluminum<br>(Ne(3) <sup>2</sup> 3p <sup>1</sup>                             | 14 28.090<br>Silicon<br>INt(35 <sup>2</sup> 39 <sup>2</sup>                                     | 15 0.974<br>Phosphorus<br>IN(35 <sup>2</sup> 5p <sup>3</sup>                               | 16 32.000<br>Sulfur<br>Netsr <sup>2</sup> sp <sup>4</sup> 17<br>Chlorin<br>Netsr <sup>2</sup> sp <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |  |  |
| Potassium Calcium Sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 44.956<br>Sc<br>andium<br>4/3d <sup>1</sup> 6s <sup>2</sup><br>22<br>Ti<br>Titanium<br>(A/3d <sup>2</sup> 6s <sup>2</sup> | 23 50.942<br>Vanadium<br>(A(36 <sup>3</sup> 46 <sup>2</sup> )<br>Vanadium<br>(A(36 <sup>5</sup> 61 <sup>3</sup> )                                                                   | Manganese Ir                                                                                                                                | 55.845<br><b>e</b><br>on<br>$a^{6}b^{2}$ <b>27 C0</b><br><b>C0balt</b><br>$[A(3a)^{2}b^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nickel                                                                                         | 9 03.540<br>Cu<br>Copper<br>(A)(36 <sup>30</sup> 41 <sup>3</sup> )<br>(A)(36 <sup>30</sup> 41 <sup>3</sup> )                         | 538 31 09.723<br>Ga<br>Gallium<br>(A()30 <sup>10</sup> (5 <sup>2</sup> 4p <sup>1</sup> ) | 32 72.031<br>Ge<br>Germanium<br>(A(3d <sup>10</sup> 6s <sup>2</sup> 4p <sup>2</sup>             | 33 74.822<br>Ass<br>Arsenic<br>(A(3)d <sup>19</sup> 46 <sup>2</sup> 4p <sup>3</sup>        | 34 78.071 35<br>See BI<br>Selenium<br>(A(34) <sup>39</sup> 69 <sup>2</sup> 40 <sup>4</sup> (A(34) <sup>39</sup> 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ne Krypton                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ttrium<br>s)40 91224<br>Zr<br>zirconium<br>(s)4352 <sup>2</sup>                                                           | 41 92.906<br>Nicbium<br>Nicbium<br>Nicbium<br>Nicbium<br>Nolydenum<br>Nolydenum<br>Nolydenum                                                                                        | Tc R                                                                                                                                        | 101.07<br>101.07<br>102.000<br>102.000<br>102.000<br>Rhodium<br>(p)(4/5s <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Palladium                                                                                      | 7 107.866<br>Ag<br>Silver<br> x(44 <sup>30</sup> 51                                                                                  |                                                                                          | 50 118.711<br>Sn<br>Tin<br>[Ki)4d <sup>30</sup> 5x <sup>2</sup> 5p <sup>2</sup>                 | 51 121.700<br><b>Sb</b><br>Antimony<br>(6)44 <sup>35</sup> 3x <sup>2</sup> 5p <sup>3</sup> | 52 127.0<br><b>Tellurium</b><br>10/44 <sup>10</sup> 55 <sup>2</sup> 59 <sup>4</sup><br>10/44 <sup>10</sup> 50 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |  |  |
| 55 132.000<br>Cesium<br>Dolpa <sup>1</sup> Dolpa <sup>2</sup> Dolpa <sup>2</sup> Dolpa <sup>2</sup> Dolpa <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -71 72 178.46<br>Hf<br>Hafnium<br>pxyst <sup>14</sup> 52 <sup>5</sup> 02 <sup>2</sup>                                     | 73 100.948<br>Ta<br>Tantalum<br>Dagat <sup>94</sup> 53 <sup>1</sup> 52 <sup>2</sup>                                                                                                 | Re C                                                                                                                                        | 190.23<br><b>77</b> 192.217<br><b>16</b><br><b>17</b><br><b>16</b><br><b>17</b><br><b>16</b><br><b>17</b><br><b>16</b><br><b>17</b><br><b>16</b><br><b>17</b><br><b>16</b><br><b>17</b><br><b>16</b><br><b>17</b><br><b>16</b><br><b>17</b><br><b>16</b><br><b>17</b><br><b>16</b><br><b>16</b><br><b>17</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>16</b><br><b>1</b> | Platinum                                                                                       | 9 196.967<br><b>Au</b><br>Gold<br>Sej4 <sup>14</sup> 5d <sup>10</sup> 6a <sup>11</sup><br>Displa <sup>16</sup> 5d <sup>10</sup>      | TI                                                                                       | 82 207.2<br>Pb<br>Lead<br>(Xel41 <sup>14</sup> 53 <sup>10</sup> 60 <sup>2</sup> 6p <sup>2</sup> | Bi                                                                                         | 84 (208.982)<br><b>Polonium</b><br>xxiiri <sup>34</sup> 53 <sup>10</sup> 6x <sup>2</sup> 69 <sup>4</sup><br>(2018.982)<br><b>85</b><br><b>85</b><br><b>Astati</b><br>(2018.982)<br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>85</b><br><b>8</b><br><b>8</b><br><b>8</b><br><b>8</b><br><b>8</b><br><b>8</b><br><b>8</b><br><b>8</b> | Rn<br>Radon                   |  |  |
| 87 223.020<br>Fr<br>Francium<br>(https://www.ministrys/2/100/00/00/00/00/00/00/00/00/00/00/00/00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -103 104 [201]<br>Rtherfordium<br>(86)5( <sup>1</sup> 6)6 <sup>2</sup> / <sub>2</sub> / <sup>2</sup>                      | 105 [262]<br><b>Db</b><br>Dubnium<br>Reist <sup>6</sup> 4o <sup>2</sup> 55 <sup>2</sup><br>I06 [26<br><b>Sg</b><br>Seaborgium<br>Reist <sup>6</sup> 4o <sup>2</sup> 55 <sup>2</sup> | Bh H                                                                                                                                        | ls Mt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ds<br>Darmstadtium Ro                                                                          | 11 (272)<br>Rg<br>Dentgenium<br>Rest <sup>1</sup> (475) <sup>27</sup><br>112<br>Copernici<br>Patist <sup>1</sup> (475) <sup>27</sup> | um Ununtrium                                                                             |                                                                                                 | Ununpentium                                                                                | 116 [208]<br>Lv<br>Livermorium<br>accr <sup>14</sup> cd <sup>10</sup> /s <sup>2</sup> /s <sup>2</sup> /s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |  |  |
| Lanthanide<br>Series Lanthanie Central Berner Control Con |                                                                                                                           |                                                                                                                                                                                     |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                |                                                                                                                                      |                                                                                          |                                                                                                 |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |  |  |
| Actinide<br>Series                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actinium The                                                                                                              |                                                                                                                                                                                     | 238.029<br>U<br>anium<br>srbed <sup>1</sup> 3x <sup>2</sup><br>93<br>237,048<br>Np<br>Neptunium<br>(%)(srbed <sup>1</sup> 3x <sup>2</sup> ) | Plutonium Amer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 243.001 96 247<br>m<br>ricium<br>H <sup>2</sup> 32 <sup>2</sup> 96 247<br>Curium<br>page/26132 | Brkelium                                                                                                                             | Cf E                                                                                     | (254)<br><b>S</b><br>Sinium<br>( <sup>11</sup> )2 <sup>2</sup><br><b>Ferm</b><br>Jin(35)        | m Mendele                                                                                  | d No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 103 [202]<br>LT<br>.awrencium |  |  |

This is an example of what is meant about coloring in the periodic table using the orbital predictions of a guide based on what part of the periodic table corresponds to which orbital type.

30 minutes

## Extend

Go to **slide 9.** Pass out one of the attached **Valence Electrons** handouts to each student. Have students return to their groups from the Explore activity and ask them to complete the handout. This time, students should work with their group to write the number of valence electrons they determined for each group on the sticky notes. Have students place their sticky notes over each group.

#### 10 minutes

## Evaluate

Go to **slide 10**. Have students participate in a <u>Word Splash</u> activity, using all of the words listed to write synthesis statements connecting all the words.

- Electron configuration
- Periodic table
- Valence electrons
- Electron orbitals
- s, p, d, and f orbitals

#### Sample Student Response

The periodic table predicts electron configuration and number of valence electrons and can be grouped by s, p, d, and f orbitals.

### Resources

• K20 Center. (n.d.). Word splash. Strategies. <u>https://learn.k20center.ou.edu/strategy/199</u>