
CONGRUENT TRIANGLES PROOF PUZZLES

Directions

On each of the following pages, cut each card apart and place into a cup or Ziploc baggie. Students are to take the baggie and determine how to arrange the cards into a coherent proof. They can then copy the proof into their notebooks or on paper to turn in.

$\overline{RI}\cong\overline{DI}$	Given
$\Delta REI \cong \Delta DEI$	SSS Triangle Congruence Theorem
$ \frac{GIVEN:}{PL \parallel \overline{AY} \; ; \; \overline{PA} \parallel \overline{LY}} $ $ PROVE: $ $ \Delta ALP \cong \Delta LAY $	PA
$\overline{PL} \parallel \overline{AY}$; $\overline{PA} \parallel \overline{LY}$	Given
$\angle PLA \cong \angle YAL$	If two parallel lines are cut by a transversal, then alternate interior angles are congruent
$\angle PAL \cong \angle YLA$	If two parallel lines are cut by a transversal, then alternate interior angles are congruent

	,
$\overline{LA}\cong\overline{LA}$	Reflexive Property of Congruence
$\Delta ALP \cong \Delta LAY$	ASA Triangle Congruence Theorem
GIVEN: $\overline{AE} \ \ \text{and} \ \ \overline{GS}$ $\mathbf{PROVE:}$ $\Delta ALP \cong \Delta LAY$	G M E
M is the midpoint of \overline{AE} and \overline{GS}	Given
$\overline{AM}\cong\overline{ME}$	Definition of midpoint
$\overline{GM}\cong\overline{MS}$	Definition of midpoint

$\angle GMS \cong \angle EMS$	Vertical angles are congruent
$\Delta ALP \cong \Delta LAY$	SAS Triangle Congruence Theorem
GIVEN: J is the midpoint of \overline{ON} $\overline{EN} \parallel \overline{YO}$ PROVE: $\Delta JOY \cong \Delta JNE$	E N Y
$\overline{EN} \parallel \overline{YO}$	Given
$\angle E \cong \angle Y$	If two parallel lines are cut by a transversal, then alternate interior angles are congruent
$\angle O \cong \angle N$	If two parallel lines are cut by a transversal, then alternate interior angles are congruent
J is the midpoint of \overline{ON}	Given

$\overline{OJ}\cong\overline{JN}$	Definition of midpoint
$\Delta JOY \cong \Delta JNE$	AAS Triangle Congruence Theorem
GIVEN: EASY is a rectangle PROVE: $\Delta SAY \cong \Delta EYA$	A Y
EASY is a rectangle	Given
$\overline{EA}\cong \overline{SY}$	Opposite Sides of a Rectangle are Congruent
$\overline{AS} \cong \overline{EY}$	Opposite Sides of a Rectangle are Congruent

$\overline{AY}\cong \overline{AY}$	Reflexive Property of Congruence
$\Delta SAY \cong \Delta EYA$	SSS Triangle Congruence Theorem