SCISSOR LIFT PARALLEL PROOF SOLUTION

Given F is the midpoint of LS and IT **Prove** LI || TS

General Reasoning

Since F is the midpoint of both segments, we have two sets of congruent sides for the two triangles. The vertical angles create a pair of congruent angles. Since these angles are between the two sets of parallel sides, the two triangles are congruent by SAS. That means \angle S is congruent to \angle L. These are alternate interior angles. Since they are congruent, that means $\overrightarrow{LI} \parallel \overrightarrow{ST}$.

STATEMENT	REASON
1. F is the midpoint of LS and IT	1. Given
2. LF = FS and TF = FI	2. Definition of midpoint
3. LF \cong FS and TF \cong FI	3. Definition of congruent segments
4. ∠ LFI \cong ∠ SFT	4. Vertical angles are congruent
5. Δ LFI $\cong \Delta$ SFT	5. Side angle side theorem for proving congruent triangles
6. ∠ILF \cong ∠TSF	6. Corresponding parts of congruent triangles are congruent.
7. $\overline{LI} \parallel \overline{ST}$	7. If alternate interior angles are congruent, then the lines are parallel.

