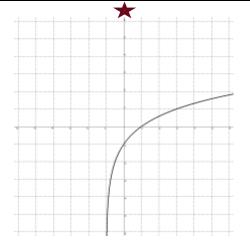
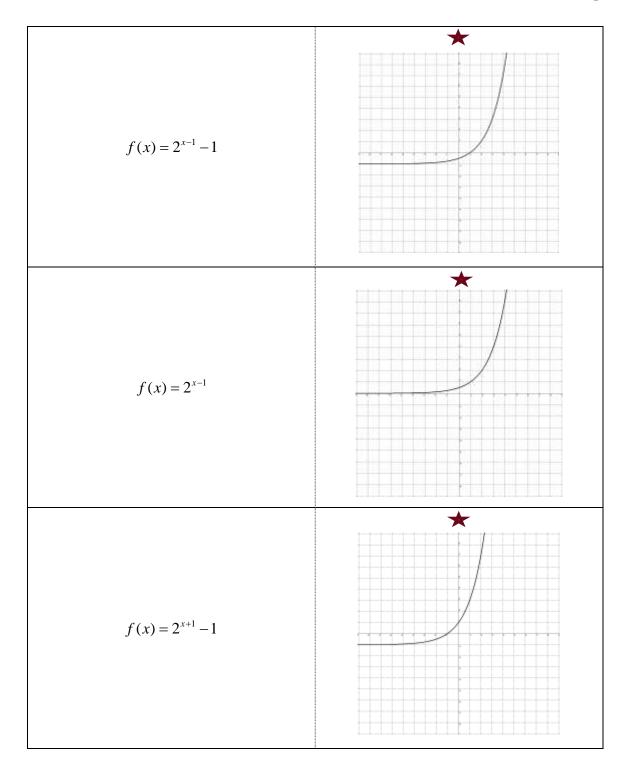

Function Families

Directions: Cut out each <u>row</u> of the table below. Then, fold along the dotted line and glue in place so that the equation appears on the back of each corresponding graph.


 $f(x) = \log_2(x)$

 $f(x) = \log_2(x+1)$


 $f(x) = \log_2(x+1) - 1$

$f(x) = \log_2(x+1) + 1$	
$f(x) = \log_2(x+2)$	
$f(x) = \sqrt{x}$	

$f(x) = \sqrt{x} - 1$	
$f(x) = 2^x$	
$f(x) = 2^x - 1$	

$f(x) = x^2$	
$f(x) = (x-1)^2$	
$f(x) = x^2 + 1$	

$f(x) = x^2 - 1$	
$f(x) = (x+1)^2$	
$f(x) = \sqrt[3]{x}$	

$f(x) = \sqrt[3]{x-1}$	
$f(x) = \sqrt[3]{x} + 1$	
$f(x) = \sqrt[3]{x} - 1$	

$f(x) = \sqrt[3]{x+1}$	
$f(x) = x^3$	
$f(x) = x^3 - 1$	

$f(x) = x^3 + 1$	
$f(x) = (x-1)^3$	
$f(x) = (x+1)^3$	

$f(x) = \mid x \mid$	
f(x) = x+1	
f(x) = x - 1	

$f(x) = \mid x \mid +1$	
f(x) = x - 1	