CHAIN RULE EXPLANATION

This handout is a step-by-step explanation of the chain rule. The purpose of providing this information is to allow teachers and students to have a scaffolding for making sense of which parts of the derivative are u and which parts are u^{\prime}.

1. Find the derivative of $y=\sqrt{1-x^{2}}$

$$
y=\sqrt{1-x^{2}}
$$

$$
\text { First, let } y=f(u)
$$

Notice that this function is a composition of two functions: $f(u)=\sqrt{u}$, where $u=1-x^{2}$

The derivative of a composite function $y=f(u)$ is $y^{\prime}=f^{\prime}(u) \cdot u^{\prime}$

$$
\text { If } y=f(u), \text { then } f(u)=\sqrt{u}
$$

Therefore, by the chain rule, $f^{\prime}(u)=\frac{1}{2}(u)^{-\frac{1}{2}} \cdot u^{\prime}$

$$
\text { Because } u=1-x^{2} \text {, then } u^{\prime}=-2 x
$$

Substituting u and u^{\prime} into the derivative, we get $y^{\prime}=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \cdot(-2 x)$
Leaving this derivative unsimplified, we can now clearly label the parts of the derivative with u and u^{\prime}.

$$
y^{\prime}=\frac{1}{2}\left(1-x^{2}\right)^{-\frac{1}{2}} \cdot(-2 x)
$$

