CHAIN RULE EXPLANATION

This handout is a step-by-step explanation of the chain rule. The purpose of providing this information is to allow teachers and students to have a scaffolding for making sense of which parts of the derivative are u and which parts are u'.

1. Find the derivative of $y = \sqrt{1 - x^2}$

$$y = \sqrt{1 - x^2}$$

First, let
$$y = f(u)$$

Notice that this function is a composition of two functions: $f(u) = \sqrt{u}$, where $u = 1 - x^2$

The derivative of a composite function y = f(u) is $y' = f'(u) \cdot u'$

If
$$y = f(u)$$
, then $f(u) = \sqrt{u}$
Therefore, by the chain rule, $f'(u) = \frac{1}{2}(u)^{-\frac{1}{2}} \cdot u'$

Because
$$u = 1 - x^2$$
, then $u' = -2x$

Substituting *u* and *u*'into the derivative, we get $y' = \frac{1}{2}(1-x^2)^{-\frac{1}{2}} \cdot (-2x)$

Leaving this derivative unsimplified, we can now clearly label the parts of the derivative with u and u'.

$$y' = \frac{1}{2}(1 - x^2)^{-\frac{1}{2}} \cdot (-2x)$$

K20

CHAIN RULE EXPLANATION