RULES OF EXPONENTS

Work in pairs to figure out a rule for each of the following situations. Try out different numeric examples to find a pattern. Use $a=4, m=3$, and $n=2$ for your first example, then choose your own numbers for the other two. Once you have a conjecture for what the rule is, try proving it by using non-exponential notation (or think of a different way to show it!). Use colors and highlighters to show connections and make your work more clear.

Situation	Numeric Examples	Rule Conjuncture	Demonstration
$a^{m} \cdot a^{n}$	$\begin{aligned} & 4^{3} \cdot 4^{2}=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=4^{5}= \\ & 1,024 \end{aligned}$		
$\left(a^{m}\right)^{n}$	$\left(4^{3}\right)^{2}=4^{3} \cdot 4^{3}=4^{6}=4,096$		
a^{-m}	$4^{-3}=1 \div(4 \cdot 4 \cdot 4)=\frac{1}{4^{3}}=\frac{1}{64}$		
a^{0}	$\frac{4^{1}}{4^{1}}=\frac{4}{4}=1$		
$\frac{a^{m}}{a^{n}}$	$\frac{4^{3}}{4^{2}}=\frac{4 \cdot 4 \cdot 4}{4 \cdot 4}=4^{1}=4$		

Handout adapted from: Exploring Exponents. (n.d.). Retrieved from https://www.youcubed.org/tasks/exploring-exponents/ Licensed under CC by 4.0

