RULES OF EXPONENTS

Work in pairs to figure out a rule for each of the following situations. Try out different numeric examples to find a pattern. Use a = 4, m = 3, and n = 2 for your first example, then choose your own numbers for the other two. Once you have a conjecture for what the rule is, try proving it by using non-exponential notation (or think of a different way to show it!). Use colors and highlighters to show connections and make your work more clear.

Situation	Numeric Examples	Rule Conjuncture	Demonstration
$a^m \cdot a^n$	$4^{3} \cdot 4^{2} = 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4 = 4^{5} = 1,024$		
$(a^m)^n$	$(4^3)^2 = 4^3 \cdot 4^3 = 4^6 = 4,096$		
	2 1 1		
<i>a</i>	$4^{-3} = 1 \div (4 \cdot 4 \cdot 4) = \frac{-}{4^3} = \frac{-}{64}$		
a^0	$\frac{\frac{4^{1}}{4^{1}} = \frac{4}{4} = 1$		
$\frac{a^m}{a^n}$	$\frac{4^3}{4^2} = \frac{4 \cdot 4 \cdot 4}{4 \cdot 4} = 4^1 = 4$		

Handout adapted from: Exploring Exponents. (n.d.). Retrieved from https://www.youcubed.org/tasks/exploring-exponents/ Licensed under <u>CC by 4.0</u>

CAN YOU SAVE THE WORLD IN TIME?

